Please use this identifier to cite or link to this item: http://repository.kln.ac.lk/handle/123456789/23045
Title: The Trans-ancestral genomic architecture of glycemic traits
Authors: Chen, J.
Spracklen, C.N.
Marenne, G.
Varshney, A.
Corbin, L.J.
Luan, J.
Willems, S.M.
Wu, Y.
Zhang, X.
Horikoshi, M.
Boutin, T.S.
Mägi, R.
Waage, J.
Li-Gao, R.
Chan, K.H.K
Yao, J.
Anasanti, M.D.
Chu, A.Y.
Claringbould, A.
Heikkinen, J.
Hong, J.
Hottenga, J.J.
Huo, S.
Kaakinen, M.A.
Louie, T.
März, W.
Moreno-Macias, H.
Ndungu, A.
Nelson, S.C.
Nolte, I.M.
North, K.E.
Raulerson, C.K.
Ray, D.
Rohde, R.
Rybin, D.
Schurmann, C.
Sim, X.
Southam, L.
Stewart, I.D.
Wang, C.A.
Wang, Y.
Wu, P.
Zhang, W.
Ahluwalia, T.S.
Appel, E.V.R.
Bielak, L.F.
Brody, J.A.
Burtt, N.P.
Cabrera, C.P.
Cade, B.E.
Chai, J.F.
Chai, X.
Chang, L.C.
Chen, C.H.
Chen, B.H.
Chitrala, K.N.
Chiu, Y.F.
De Haan, H.G.
Delgado, G.E.
Demirkan, A.
Duan, Q.
Engmann, J.
Fatumo, S.A.
Gayán, J.
Giulianini, F.
Gong, J.H.
Gustafsson, S.
Hai, Y.
Hartwig, F.P.
He, J.
Heianza, Y.
Huang, T.
Huerta-Chagoya, A.
Hwang, M.Y.
Jensen, R.A.
Kawaguchi, T.
Kentistou, K.A.
Kim, Y.J.
Kleber, M.E.
Kooner, I.K.
Lai, S.
Lange, L.A.
Langefeld, C.D.
Lauzon, M.
Li, M.
Ligthart, S.
Liu, J.
Loh, M.
Long, J.
Lyssenko, V.
Mangino, M.
Marzi, C.
Montasser, M.E.
Nag, A.
Nakatochi, M.
Noce, D.
Noordam, R.
Pistis, G.
Preuss, M.
Raffield, L.
Rasmussen-Torvik, L.J.
Rich, S.S.
Robertson, N.R.
Rueedi, R.
Ryan, K.
Sanna, S.
Saxena, R.
Schraut, K.E.
Sennblad, B.
Setoh, K.
Smith, A.V.
Sparsø, T.
Strawbridge, R.J.
Takeuchi, F.
Tan, J.
Trompet, S.
Van den Akker, E.
Van der Most, P.J.
Verweij, N.
Vogel, M.
Wang, H.
Wang, C.
Wang, N.
Warren, H.R.
Wen, W.
Wilsgaard, T.
Wong, A.
Wood, A.R.
Xie, T.
Zafarmand, M.H.
Zhao, J.H.
Zhao, W.
Amin, N.
Arzumanyan, Z.
Astrup, A.
Bakker, S.J.L.
Baldassarre, D.
Beekman, M.
Bergman, R.N.
Bertoni, A.
Blüher, M.
Bonnycastle, L.L.
Bornstein, S.R.
Bowden, D.W.
Cai, Q.
Campbell, A.
Campbell, H.
Chang, Y.C.
de Geus, E.J.C.
Dehghan, A.
Du, S.
Eiriksdottir, G.
Farmaki, A.E.
Frånberg, M.
Fuchsberger, C.
Gao, Y.
Gjesing, A.P.
Goel, A.
Han, S.
Hartman, C.A.
Herder, C.
Hicks, A.A.
Hsieh, C.H.
Hsueh, W.A.
Ichihara, S.
Igase, M.
Ikram, M.A.
Johnson, W.C.
Jørgensen, M.E.
Joshi, P.K.
Kalyani, R.R.
Kandeel, F.R.
Katsuya, T.
Khor, C.C.
Kiess, W.
Kolcic, I.
Kuulasmaa, T.
Kuusisto, J.
Läll, K.
Lam, K.
Lawlor, D.A.
Lee, N.R.
Lemaitre, R.N.
Li, H.
Lifelines Cohort Study
Lin, S.Y.
Lindström, J.
Linneberg, A.
Liu, J.
Lorenzo, C.
Matsubara, T.
Matsuda, F.
Mingrone, G.
Mooijaart, S.
Moon, S.
Nabika, T.
Nadkarni, G.N.
Nadler, J.L.
Nelis, M.
Neville, M.J.
Norris, J.M.
Ohyagi, Y.
Peters, A.
Peyser, P.A.
Polasek, O.
Qi, Q.
Raven, D.
Reilly, D.F.
Reiner, A.
Rivideneira, F.
Roll, K.
Rudan, I.
Sabanayagam, C.
Sandow, K.
Sattar, N.
Schürmann, A.
Shi, J.
Stringham, H.M.
Taylor, K.D.
Teslovich, T.M.
Thuesen, B.
Timmers, P.R.H.J.
Tremoli, E.
Tsai, M.Y.
Uitterlinden, A.
van Dam, R.M.
van Heemst, D.
van Hylckama Vlieg, A.
van Vliet-Ostaptchouk, J.V.
Vangipurapu, J.
Vestergaard, H.
Wang, T.
Willems van Dijk, K.
Zemunik, T.
Abecasis, G.R.
Adair, L.S.
Aguilar-Salinas, C.A.
Alarcón-Riquelme, M.E.
An, P.
Aviles-Santa, L.
Becker, D.M.
Beilin, L.J.
Bergmann, S.
Bisgaard, H.
Black, C.
Boehnke, M.
Boerwinkle, E.
Böhm, B.O.
Bønnelykke, K.
Boomsma, D.I.
Bottinger, E.P.
Buchanan, T.A.
Canouil, M.
Caulfield, M.J.
Chambers, J.C.
Chasman, D.I.
Chen, Y.I.
Cheng, C.Y.
Collins, F.S.
Correa, A.
Cucca, F.
de Silva, H.J.
Dedoussis, G.
Elmståhl, S.
Evans, M.K.
Ferrannini, E.
Ferrucci, L.
Florez, J.C.
Franks, P.W.
Frayling, T.M.
Froguel, P.
Gigante, B.
Goodarzi, M.O.
Gordon-Larsen, P.
Grallert, H.
Grarup, N.
Grimsgaard, S.
Groop, L.
Gudnason, V.
Guo, X.
Hamsten, A.
Hansen, T.
Hayward, C.
Heckbert, S.R.
Horta, B.L.
Huang, W.
Ingelsson, E.
James, P.S.
Jarvelin, M.R.
Jonas, J.B.
Jukema, J.W.
Kaleebu, P.
Kaplan, R.
Kardia, S.L.R.
Kato, N.
Keinanen-Kiukaanniemi, S.M.
Kim, B.J.
Kivimaki, M.
Koistinen, H.A.
Kooner, J.S.
Körner, A.
Kovacs, P.
Kuh, D.
Kumari, M.
Kutalik, Z.
Laakso, M.
Lakka, T.A.
Launer, L.J.
Leander, K.
Li, H.
Lin, X.
Lind, L.
Lindgren, C.
Liu, S.
Loos, R.J.F.
Magnusson, P.K.E.
Mahajan, A.
Metspalu, A.
Mook-Kanamori, D.O.
Mori, T.A.
Munroe, P.B.
Njølstad, I.
O'Connell, J.R.
Oldehinkel, A.J.
Ong, K.K.
Padmanabhan, S.
Palmer, C.N.A.
Palmer, N.D.
Pedersen, O.
Pennell, C.E.
Porteous, D.J.
Pramstaller, P.P.
Province, M.A.
Psaty, B.M.
Qi, L.
Raffel, L.J.
Rauramaa, R.
Redline, S.
Ridker, P.M.
Rosendaal, F.R.
Saaristo, T.E.
Sandhu, M.
Saramies, J.
Schneiderman, N.
Schwarz, P.
Scott, L.J.
Selvin, E.
Sever, P.
Shu, X.O.
Slagboom, P.E.
Small, K.S.
Smith, B.H.
Snieder, H.
Sofer, T.
Sørensen, T.I.A.
Spector, T.D.
Stanton, A.
Steves, C.J.
Stumvoll, M.
Sun, L.
Tabara, Y.
Tai, E.S.
Timpson, N.J.
Tönjes, A.
Tuomilehto, J.
Tusie, T.
Uusitupa, M.
van der Harst, P.
van Duijn, C.
Vitart, V.
Vollenweider, P.
Vrijkotte, T.G.M.
Wagenknecht, L.E.
Walker, M.
Wang, Y.X.
Wareham, N.J.
Watanabe, R.M.
Watkins, H.
Wei, W.B.
Wickremasinghe, A.R.
Willemsen, G.
Wilson, J.F.
Wong, T.Y.
Wu, J.Y.
Xiang, A.H.
Yanek, L.R.
Yengo, L.
Yokota, M.
Zeggini, E.
Zheng, W.
Zonderman, A.B.
Rotter, J.I.
Gloyn, A.L.
McCarthy, M.I.
Dupuis, J.
Meigs, J.B.
Scott, R.A.
Prokopenko, I.
Leong, A.
Liu, C.T.
Parker, S.C.J.
Mohlke, K.L.
Langenberg, C.
Wheeler, E.
Morris, A.P.
Barroso, I.
Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC) Collaborators.
Keywords: glycemic traits
Issue Date: 2021
Publisher: Nature Pub. Co.
Citation: Nature Genetics. 2021; 53(6):840-860.
Abstract: ABSTRACT: Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Description: Indexed in MEDLINE
URI: http://repository.kln.ac.lk/handle/123456789/23045
ISSN: 1061-4036 (Print)
1546-1718 (Electronic)
1061-4036 (Linking)
Appears in Collections:Journal/Magazine Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.