Codes over rings of size p2 and lattices over imaginary quadratic fields

dc.contributor.authorShaska Ten_US
dc.contributor.authorShore Cen_US
dc.contributor.authorWijesiri G Sen_US
dc.date.accessioned2014-11-19T04:48:09Z
dc.date.available2014-11-19T04:48:09Z
dc.date.issued2010
dc.description.abstractLet ?>0 be a square-free integer congruent to 3 mod 4 and OK the ring of integers of the imaginary quadratic field View the MathML source. Codes C over rings OK/pOK determine lattices ??(C) over K . If p?? then the ring R:=OK/pOK is isomorphic to Fp2 or Fp?Fp. Given a code C over R, theta functions on the corresponding lattices are defined. These theta series ???(C)(q) can be written in terms of the complete weight enumerators of C . We show that for any two ?<?? the first View the MathML source terms of their corresponding theta functions are the same. Moreover, we conjecture that for View the MathML source there is a unique symmetric weight enumerator corresponding to a given theta function. We verify the conjecture for primes p<7, ??59, and small n.en_US
dc.identifier.departmentPhysicsen_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/4188
dc.publisherFinite Fields Appl.en_US
dc.titleCodes over rings of size p2 and lattices over imaginary quadratic fields
dc.typearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2.pdf
Size:
316.68 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections