Codes over rings of size p2 and lattices over imaginary quadratic fields
No Thumbnail Available
Files
Date
2010
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Finite Fields Appl.
Abstract
Let ?>0 be a square-free integer congruent to 3 mod 4 and OK the ring of integers of the imaginary quadratic field View the MathML source. Codes C over rings OK/pOK determine lattices ??(C) over K . If p?? then the ring R:=OK/pOK is isomorphic to Fp2 or Fp?Fp. Given a code C over R, theta functions on the corresponding lattices are defined. These theta series ???(C)(q) can be written in terms of the complete weight enumerators of C . We show that for any two ?<?? the first View the MathML source terms of their corresponding theta functions are the same. Moreover, we conjecture that for View the MathML source there is a unique symmetric weight enumerator corresponding to a given theta function. We verify the conjecture for primes p<7, ??59, and small n.