A Machine Learning Approach to Detect Denial of Sleep Attacks in Internet of Things (IoT)

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

IoT

Abstract

The Internet of Things (IoT) has rapidly evolved into a central component of today’s technological landscape, enabling seamless connectivity and communication among a vast array of devices. It underpins automation, real-time monitoring, and smart infrastructure, serving as a foundation for Industry 4.0 and paving the way toward Industry 5.0. Despite the potential of IoT systems to transform industries, these systems face a number of challenges, most notably the lack of processing power, storage space, and battery life. Whereas cloud and fog computing help to relieve computational and storage constraints, energy limitations remain a severe impediment to long-term autonomous operation. Among the threats that exploit this weakness, the Denial-of-Sleep (DoSl) attack is particularly problematic because it prevents nodes from entering low-power states, leading to battery depletion and degraded network performance. This research investigates machine-learning (ML) and deep-learning (DL) methods for identifying such energy-wasting behaviors to protect IoT energy resources. A dataset was generated in a simulated IoT environment under multiple DoSl attack conditions to validate the proposed approach. Several ML and DL models were trained and tested on this data to discover distinctive power-consumption patterns related to the attacks. The experimental results confirm that the proposed models can effectively detect anomalous behaviors associated with DoSl activity, demonstrating their potential for energy-aware threat detection in IoT networks. Specifically, the Random Forest and Decision Tree classifiers achieved accuracies of 98.57% and 97.86%, respectively, on the held-out 25% test set, while the Long Short-Term Memory (LSTM) model reached 97.92% accuracy under a chronological split, confirming effective temporal generalization. All evaluations were conducted in a simulated environment, and the paper also outlines potential pathways for future physical testbed deployment.

Description

Citation

Dissanayake, I., Welhenge, A., & Weerasinghe, H. D. (2025). A Machine Learning Approach to Detect Denial of Sleep Attacks in Internet of Things (IoT). IoT, 6(4), 71. https://doi.org/10.3390/iot6040071

Collections

Endorsement

Review

Supplemented By

Referenced By