Abstract:
Cuprous oxide (Cu2O) is a suitable semiconducting material in fabrication for low-cost, eco-friendly semiconductor junction devices. Besides the parameterization of the growth conditions of Cu2O, formation of metal contacts impact the overall performance of these type of devices. The existence of unavoidable dangling bonds and/or dislocated surface atoms could lead to form imperfect contacts with metals, for example in Cu2O/Au junction devices. Nevertheless, modification of the Cu2O thin film surfaces prior to make contacts with Au has shown the capability to alter the junction properties. Here we report that, the application of surface treatments; annealing and/or sulphidation on specifically the electrodeposited p-Cu2O thin film surfaces, where p-Cu2O thin films were grown in low cupric ion concentrated acetate bath, has influenced the interfacial properties of particular p-Cu2O/Au Schottky junctions compared to the untreated p-Cu2O/Au Schottky junction. This has been well-established by the results of SEM and C-V characterizations of p-Cu2O/Au Schottky junctions. The subsequent annealing and sulphidation of p-Cu2O thin film surfaces have lowered the built-in potential value by 121 mV compared to the untreated Schottky junction. This result reveals the possibility of employing surface treatments on electrodeposited Cu2O thin films in fabrication of high efficient Cu2O based junction devices.