Medicine

Permanent URI for this communityhttp://repository.kln.ac.lk/handle/123456789/12

This repository contains the published and unpublished research of the Faculty of Medicine by the staff members of the faculty

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
    (Nature Publishing Company, New York, 2022) Mahajan, A.; Spracklen, C.N.; Zhang, W.; Ng, M.C.Y.; Petty, L.E.; Kitajima, H.; Yu, G.Z.; Rüeger, S.; Speidel, L.; Kim, Y.J.; Horikoshi, M.; Mercader, J.M .; Taliun, D.; Moon, S.; Kwak, S.H.; Robertson, N.R.; Rayner, N.W.; Loh, M.; Kim, B.; Chiou, J.; Miguel-Escalada, I.; Parolo, P.D.B.; Lin, K.; Bragg, F.; Preuss, M.H.; Takeuchi, F.; Nano, J.; Guo, X.; Lamri, A.; Nakatoch, M.; Scott, R.A.; Lee, J.J.; Huerta-Chagoya, A.; Graff, M.; Chai, J.F.; Parra, E. J.; Yao, J.; Bielak, L.F.; Tabara, Y.; Hai, Y.; Steinthorsdottir, V.; Cook, J.P.; Kals, M.; Grarup, N.; Schmidt, E.M.; Pan, I.; Sofer, T.; Wuttke, M.; Sarnowski, C.; Gieger, C.; Nousome, D.; Trompet, S.; Long, J.; Sun, M.; Tong, L.; Chen, W.M.; Ahmad, M.; Noordam, R.; Lim, V.J.Y.; Tam, C.H.T.; Joo, Y.Y.; Chen, C.H.; Raffield, L.M.; Lecoeur, C.; Prins, B.P.; Nicolas, A.; Yanek, L.R.; Chen, G.; Jensen, R.A.; Tajuddin, S.; Kabagambe, E.K.; An, P.; Xiang, A.H.; Choi, H.S.; Cade, B.E.; Tan, J.; Flanagan, J.; Abaitua, F.; Adair, L.S.; Adeyemo, A.; Aguilar-Salinas, C.A.; Akiyama, M.; Anand, S.S.; Bertoni, A.; Bian, Z.; Bork-Jensen, J.; Brandslund, I.; Brody, J.A.; Brummett, C.M.; Buchanan, T.A.; Canouil, M.; Chan, J.C.N.; Chang, L.C.; Chee, M.L.; Chen, J.; Chen, S.H.; Chen, Y.T.; Chen, Z.; Chuang, L.M.; Cushman, M.; Das, S.K.; de Silva, H.J.; Dedoussis, G.; Dimitrov, L.; Doumatey, A.P.; Du, S.; Duan, Q.; Eckardt, K.U.; Emery, L.S.; Evans, D.S.; Evans, M.K.; Fischer, K.; Floyd, J.S.; Ford, I.; Fornage, M.; Franco, O.H.; Frayling, T.M.; Freedman, B.I.; Fuchsberger, C.; Genter, P.; Gerstein, H.C.; Giedraitis, V.; Villalpando, C.G.; Villalpando, M.E.G.; Goodarzi, M.O.; Larsen, P.G.; Gorkin, D.; Gross, M.; Guo, Y.; Hackinger, S.; Han, S.; Hattersley, A.T.; Herder, C.; Howard, A.G.; Hsueh, W.; Huang, M.; Huang, W.; Hung, Y.; Hwang, M.Y.; Hwu, C.; Ichihara, S.; Ikram, M.A.; Ingelsson, M.; Islam, M.T.; Isono, M.; Jang, H.M.; Jasmine, F.; Jiang, G.; Jonas, J.B.; Jørgensen, M.E.; Jørgensen, T.; Kamatani, Y.; Kandeel, F.R.; Kasturiratne, A.; Katsuya, T.; Kaur, V.; Kawaguchi, T.; Keaton, J.M.; Kho, A.N.; Khor, C.C.; Kibriya, M.G.; Kim, D.H.; Kohara, K.; Kriebel, J.; Kronenberg, F.; Kuusisto, J.; Läll, K.; Lange, L.A.; Lee, M.; Lee, N.R.; Leong, A.; Li, L.; Li, Y.; Li-Gao, R.; Ligthart, S.; Lindgren, C.M.; Linneberg, A.; Liu, C.; Liu, J.; Locke, A.E.; Louie, T.; Luan, J.; Luk, A.O.; Luo, X.; Lv, J.; Lyssenko, V.; Mamakou, V.; Mani, K.R.; Meitinger, T.; Metspalu, A.; Morris, A.D.; Nadkarni, G.N.; Nadler, J.L.; Nalls, M.A.; Nayak, U.; Nongmaithem, S.S.; Ntalla, I.; Okada, Y.; Orozco, L.; Patel, S.R.; Pereira, M.A.; Peters, A.; Pirie, F.J.; Porneala, B.; Prasad, G.; Preissl, S.; Rasmussen-Torvik, L.J.; Reiner, A.P.; Roden, M.; Rohde, R.; Roll, K.; Sabanayagam, C.; Sander, M.; Sandow, K.; Sattar, N.; Schönherr, S.; Schurmann, C.; Shahriar, M.; Shi, J.; Shin, D.M.; Shriner, D.; Smith, J.A.; So, W.Y.; Stančáková, A.; Stilp, A.M.; Strauch, K.; Suzuki, K.; Takahashi, A.; Taylor, K.D.; Thorand, B.; Thorleifsson, G.; Thorsteinsdottir, U.; Tomlinson, B.; Torres, J.M.; Tsai, F.; Tuomilehto, J.; Tusie-Luna, T.; Udler, M.S.; Salgado, A.V.; Dam, R.M.; Klinken, J.B.; Varma, R.; Vujkovic, M.; Wacher-Rodarte, N.; Wheeler, E.; Whitsel, E.A.; Wickremasinghe, A.R.; Dijk, K.W.; Witte, D.R.; Yajnik, C.S; Yamamoto, K.; Yamauchi, T.; Yengo, L.; Yoon, K.; Yu, C.; Yuan, J.M.; Yusuf, S.; Zhang, L.; Zheng, W.; FinnGen; eMERGE Consortium; Leslie J Raffel; Igase, M.; Ipp, E.; Redline, S.; Cho, Y.S.; Lind, L.; Province, M.A.; Hanis, C.L.; Peyser, P.A.; Ingelsson, E.; Zonderman, A.B.; Psaty, B.M.; Wang, Y.; Rotimi, C.N.; Becker, D.M.; Matsuda, F.; Liu, Y.; Zeggini, E.; Yokota, M.; Rich, S.S.; Kooperberg, C.; Pankow, J.S.; Engert, J.C.; Chen, Y.I.; Froguel, P.; Wilson, J.G.; Sheu, W.H.H.; Kardia, S.L.R.; Wu, J.Y.; Hayes, M.G.; Ma, R.C.W.; Wong, T.Y.; Groop, L.; Mook-Kanamori, D.O.; Chandak, G.R.; Collins, F.S.; Bharadwaj, D.; Paré, G.; Sale, M.M.; Ahsan, H.; Motala, A.A.; Shu, X.O.; Park, K.S.; Jukema, J.W.; Cruz, M.; Cowdin, R.M.; Grallert, H.; Cheng, C.Y.; Bottinger, E.P.; Dehghan, A.; Tai, E.S.; Dupuis, J.; Kato, N.; Laakso, M.; Köttgen, A.; Koh, W.P.; Palmer, C.N.A.; Liu, S.; Abecasis, G.; Kooner, J.S.; Loos, R.J.F.; North, K.E.; Haiman, C.A.; Florez, J.C.; Saleheen, D.; Hansen, T.; Pedersen, O.; Mägi, R.; Langenberg, C.; Wareham, N.J.; Maeda, S.; Kadowaki, T.; Lee, J.; Millwood, I.Y.; Walters, R.G.; Stefansson, K.; Myers, S.R.; Ferrer, J.; Gaulton, K.J.; Meigs, J.B.; Mohlke, K.L.; Gloyn, A.L.; Bowden, D.W.; Below, J.E.; Chambers, J.C.; Sim, X.; Boehnke, M.; Rotter, J.I.; McCarthy, M.I.; Morris, A.P.
    We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10-9), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.
  • Thumbnail Image
    Item
    Identification of genetic effects underlying type 2 diabetes in South Asian and European populations
    (Nature Publishing Group UK, 2022) Loh, M.; Zhang, W.; Ng, H.K.; Schmid, K.; Lamri, A.; Tong, L.; Ahmad, M.; Lee, J.J.; Ng, M.C.Y.; Petty, L.E.; Spracklen, C.N.; Takeuchi, F.; Islam, M.T.; Jasmine, F.; Kasturiratne, A.; Kibriya, M.; Mohlke, K.L.; Paré, G.; Prasad, G.; Shahriar, M.; Chee, M.L.; de Silva, H.J.; Engert, J.C.; Gerstein, H.C.; Mani, K.R.; Sabanayagam, C.; Vujkovic, M.; Wickremasinghe, A.R.; Wong, T.Y.; Yajnik, C.S.; Yusuf, S.; Ahsan, H.; Bharadwaj, D.; Anand, S.S.; Below, J.E.; Boehnke, M.; Bowden, D.W.; Chandak, G.R.; Cheng, C.Y.; Kato, N.; Mahajan, A.; Sim, X.; McCarthy, M.I.; Morris, A.P.; Kooner, J.S.; Saleheen, D.; Chambers, J.C.
    South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-wide association meta-analysis with South Asian T2D cases (n = 16,677) and controls (n = 33,856), followed by combined analyses with Europeans (neff = 231,420). We identify 21 novel genetic loci for significant association with T2D (P = 4.7 × 10-8 to 5.2 × 10-12), to the best of our knowledge at the point of analysis. The loci are enriched for regulatory features, including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B, PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D between the top and bottom quartile. Our results provide further insights into the genetic mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis of data from across ancestral populations.
  • Item
    Incidence and predictors of metabolic syndrome among urban, adult Sri Lankans: a community cohort, 7-year follow-up study
    (European Association for the Study of Diabetes, 2017) de Silva, S.T.; Niriella, M.A.; Kasturiratne, A.; Kottahachchi, D.; Ranawaka, U.K.; Dassanayake, A.; de Silva, A.P.; Pathmeswaran, P.; Wickremasinghe, R.; Kato, N.; de Silva, H.J.
    BACKGROUND AND AIMS In 2007, we reported a 38.9% prevalence of metabolic syndrome (MetS) in an urban, adult population. Published data on incident MetS from South Asia is lacking. This study investigated the incidence and risk factors for MetS after a 7-year follow-up of the initial cohort. MATERIALS AND METHODS: The study population (selected by age-stratified random sampling from the Ragama MOH area) was screened in 2007 (aged 35-64 years) and re-evaluated in 2014 (aged 42-71 years). On both occasions, structured interview, anthropometric measurements, liver ultrasound, biochemical and serological tests were performed. MetS was diagnosed on established International Diabetes Federation (IDF 2012) criteria. Total body fat (TBF) and visceral fat percentage (VFP) were measured in 2014, using impedance. Abnormal TBF was defined as >32% for females and >25% for males. Abnormal VFP was defined as >10% for both sexes. Non-alcoholic fatty liver disease (NAFLD) was diagnosed on established ultrasound criteria, safe alcohol consumption (Asian standards: <14 units/week for men, <7 units/week for women) and absence of hepatitis B and C markers. RESULTS: 2137/2967 (72.0%) of the initial cohort attended follow-up [1229 (57.5%) women; mean-age 52.4 (SD-7.7) years]. 1000/2137 [548 (54.8%) women; mean age 57.5 years (SD-7.74)] had MetS (prevalence-46.8%). Out of 1246 individuals who initially did not have MetS in 2007, 318 [225 (70.8%) women; mean age 57.5 (SD 7.7) years] had developed incident MetS after 7 years (annual incidence-2.13%). Comparison of incident MetS with those with no MetS in 2014 is shown in Table 1. On logistic regression, female sex (OR 3.6, p<0.001), central obesity [OR 4.58, p<0.001], BMI >23kg/m2 [OR 4.84, p<0.001], increase in weight 2%-5% [OR 2.02, p<0.001], increase in weight >5% [OR 5.3, p<0.001), increase in waist circumference (WC) 5-10-cm [OR 3.68, p<0.001], increase in WC >10cm [OR 10.34, p<0.001] and NAFLD (OR 2.44, p<0.001) in 2007 were independently predictive of incident MetS in 2014. Abnormal VFP [OR 4.23, p<0.001] and abnormal TBF [OR 5.25, p<0.001] were also associated with incident MetS. CONCLUSION: In this prospective community study, the annual incidence of MetS was 2.13%. Female gender, increase in weight and WC from baseline and the presence of NAFLD predicted the development of incident MetS. Obesity at baseline was the only defining individual component of MetS that predicted future MetS.
All items in this Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated. No item in the repository may be reproduced for commercial or resale purposes.