Medicine

Permanent URI for this communityhttp://repository.kln.ac.lk/handle/123456789/12

This repository contains the published and unpublished research of the Faculty of Medicine by the staff members of the faculty

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Epidemiological evidence of acute transmission of zika virus infection in dengue suspected patients in Sri-Lanka
    (Elsevier, 2023) Ngwe, T.M.M.; Raini, S.K.; Fernando, L.; Gunawardene, Y.I.N.S.; Inoue, S.; Takamatsu, Y.; Urano, T.; Muthugala, R.; Hapugoda, M.; Morita, K.
    Background: Zika Virus (ZIKV) is a re-emerging, arthropod-borne flavivirus transmitted by Aedes mosquitoes (Ae. aegypti and Ae. albopictus). The coexistence of dengue virus (DENV) and ZIKV concurrently has been associated with a wide array of neurological complications, which may influence the clinical outcomes of infections. Sri Lanka witnessed a severe dengue epidemic in 2017, characterized by extraordinary and severe disease manifestations with considerable morbidity. Therefore, this study assessed the potential occurrence of ZIKV infection during DENV outbreak in Sri Lanka from 2017 to 2019, which could bear substantial implications for public health. Methods: Five hundred ninety-five serum samples were procured from individuals suspected of dengue and admitted to Kandy National Hospital between 2017 and 2018 and the Negombo District General Hospital between 2018 and 2019. These samples underwent quantitative real-time RT-PCR (qRT-PCR) to identify the presence of the ZIKV gene, while enzyme-linked immunosorbent assay was employed to detect ZIKV-specific IgM and IgG antibodies. Focus reduction neutralization tests were subsequently conducted to confirm ZIKV infection. Results: Among the 595 serum samples, 6 (1.0%) tested positive for ZIKV using qRT-PCR. Anti-ZIKV IgM and IgG were identified in 18.0% and 38.6% patients. Sixty-six (11.0%) samples demonstrated the presence of anti-ZIKV IgM and IgG. Within ZIKV IgM-positive samples, 2.2% exhibited neutralizing antibodies against ZIKV. Through the implementation of qRT-PCR, ZIKV IgM detection, and neutralization testing, 2% and 3.7% cases of ZIKV infections were confirmed in the Kandy and Negombo regions, respectively. Conclusion: This study is the inaugural endeavor to substantiate the existence of ZIKV infection in Sri Lanka utilizing molecular and serological analysis. The findings of this investigation imply that ZIKV was circulating throughout the 2017-2019 DENV outbreak. These results underscore the necessity for improved preparedness for future outbreaks, fortifying governmental policies on public health, and establishing effective early warning systems regarding the emergence of these viruses
  • Thumbnail Image
    Item
    A Comprehensive analysis on abundance, distribution, and bionomics of potential malaria vectors in Mannar District of Sri Lanka
    (Hindawi Publishing Corporation, 2019) Gunathilaka, N.; Hapugoda, M.; Wickremasinghe, R.; Abeyewickreme, W.
    BACKGROUND:A detailed knowledge of the distribution of the malaria vectors in Mannar district of Sri Lanka has not been studied after 1927. Past records indicated the presence of only seven species of anophelines, namely, An. culicifacies, An. subpictus, An. barbirostris, An. peditaeniatus, An. nigerrimus, An. Jamesii, and An. maculatus. There have been many changes in terms of distribution of Anopheles in the district over time. METHODS: Entomological surveillance was conducted on a monthly basis, comprising indoor hand collection, window trap collection, cattle-baited net collection, cattle-baited hut collection, and larval survey from June 2010 to June 2012 in 12 study areas under three entomological sentinel sites. The relationship between seven abiotic variables of the breeding habitats was measured. Pearson's correlation coefficients were used to determine the associations between climatic variables and anopheline densities. RESULTS:A total of 74,181 mosquitoes belonging to 14 Anopheles species were recorded. An. subpictus was the most predominant species from all techniques representing 92% (n=68,268) of the total anopheline collection. However, Anopheles culicifacies was not recorded from any site during the study period. Larval surveys identified 12 breeding habitat categories including waste water collections, lagoon water collections, and drains which were not recorded as breeding habitats by previous studies. The mean dissolved oxygen level of waste water collections was 3.45±0.15 mg/l. The mean salinity and conductivity of lagoon water collections were 21105±1344 mg/l and 34734±1974 μs/cm, respectively.CONCLUSION: The present study provides the updated knowledge on anopheline distribution and vector bionomics. Therefore, documentation of the current knowledge would be useful for learners and health authorities to design appropriate vector control measures in the prevention of reintroduction of malaria.
  • Thumbnail Image
    Item
    First report of V1016G and S989P knockdown resistant (kdr) mutations in pyrethroid-resistant Sri Lankan Aedes aegypti mosquitoes
    (BioMed Central, 2018) Fernando, S.D.; Hapugoda, M.; Perera, R.; Saavedra-Rodriguez, K.; Black WC 4th; de Silva, N.K.; ; ;
    BACKGROUND: Dengue is a serious arboviral disease in Sri Lanka with a large number of dengue fever (DF) cases every year. Control of the primary vector Aedes aegypti depends upon larval habitat source reduction and insecticide application. However, increases in the number of reported cases suggest the inefficiency of current control strategies and the possibility of resistance to currently used insecticides. Early detection of mutations in the voltage-gated sodium channel (vgsc) gene that confer knockdown resistance (kdr) to pyrethroid insecticides is important in resistance management in vector populations. RESULTS: Resistance to pyrethroid insecticides was detected in the three populations studied. Polymerase chain reaction was used to detect the presence of two kdr mutations F1534C and V1016G. During this process a S989P mutation was also detected in pyrethroid-resistant Ae. aegypti populations. These mutations were found to be widespread and frequent in the collections studied. CONCLUSIONS: To our knowledge, this study reveals for the first time the presence of V1016G and S989P mutant alleles in the vgsc of Sri Lankan Ae. aegypti populations. The spread of the mutant alleles throughout the country poses a threat of increased resistance to pyrethroids. Long-term insecticide applications and indiscriminate use of pyrethroids has led to the evolution of resistance. More strategic and diverse strategies, including novel insecticides with new modes of action and community participation, should be engaged for Ae. aegypti control.
  • Thumbnail Image
    Item
    Use of a public-private partnership in malaria elimination efforts in Sri Lanka; a case study
    (BioMed Central, 2018) Fernando, D.; Wijeyaratne, P.; Wickremasinghe, R.; Abeyasinghe, R.R.; Galappaththy, G.N.L.; Wickremasinghe, R.; Hapugoda, M.; Abeyewickreme, W.; Rodrigo, C.
    BACKGROUND: In special circumstances, establishing public private partnerships for malaria elimination may achieve targets faster than the state sector acting by itself. Following the end of the separatist war in Sri Lanka in 2009, the Anti Malaria Campaign (AMC) of Sri Lanka intensified malaria surveillance jointly with a private sector partner, Tropical and Environmental Diseases and Health Associates Private Limited (TEDHA) with a view to achieving malaria elimination targets by 2014. METHODS: This is a case study on how public private partnerships can be effectively utilized to achieve malaria elimination goals. TEDHA established 50 Malaria Diagnostic Laboratories and 17 entomology surveillance sentinel sites in consultation with the AMC in areas difficult to access by government officials (five districts in two provinces affected by war). RESULTS: TEDHA screened 994,448 individuals for malaria, of which 243,867 were screened at mobile malaria clinics as compared to 1,102,054 screened by the AMC. Nine malaria positives were diagnosed by TEDHA, while the AMC diagnosed 103 malaria cases in the same districts in parallel. Over 13,000 entomological activity days were completed. Relevant information was shared with AMC and the data recorded in the health information system. CONCLUSIONS: A successful public-private partnership model for malaria elimination was initiated at a time when the health system was in disarray in war ravaged areas of Sri Lanka. This ensured a high annual blood examination rate and screening of vulnerable people in receptive areas. These were important for certification of malaria-free status which Sri Lanka eventually received in 2016.
All items in this Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated. No item in the repository may be reproduced for commercial or resale purposes.