Medicine
Permanent URI for this communityhttp://repository.kln.ac.lk/handle/123456789/12
This repository contains the published and unpublished research of the Faculty of Medicine by the staff members of the faculty
Browse
2 results
Search Results
Item Entomological surveillance with viral tracking demonstrates a migrated viral strain caused dengue epidemic in July, 2017 in Sri Lanka.(Public Library of Science, 2020) Withanage, G.P.; Hapuarachchi, H.C.; Viswakula, S.D.; Gunawardene, Y.I.N.S.; Hapugoda, M.BACKGROUND: Dengue is the most important mosquito-borne viral infection disease in Sri Lanka triggering extensive economic and social burden in the country. Even after numerous source reduction programmes, more than 30,000 incidences are reporting in the country every year. The last and greatest dengue epidemic in the country was reported in July, 2017 with more than 300 dengue related deaths and the highest number of dengue incidences were reported from the District of Gampaha. There is no Dengue Virus (DENV) detection system in field specimens in the district yet and therefore the aim of the study is development of entomological surveillance approach through vector survey programmes together with molecular and phylogenetic methods to identify detection of DENV serotypes circulation in order to minimize adverse effects of imminent dengue outbreaks. Entomological surveys were conducted in five study areas in the district for 36 months and altogether, 10,616 potential breeding places were investigated and 423 were positive for immature stages of dengue vector mosquitoes. During adult collections, 2,718 dengue vector mosquitoes were collected and 4.6% (n = 124) were Aedes aegypti. While entomological indices demonstrate various correlations with meteorological variables and reported dengue incidences, the mosquito pools collected during the epidemic in 2017 were positive for DENV. The results of the phylogenetic analysis illustrated that Envelope (E) gene sequences derived from the isolated DENV belongs to the Clade Ib of Cosmopolitan genotype of the DENV serotype 2 which has been the dominant stain in South-East Asian evidencing that a recent migration of DENV strain to Sri Lanka.Item Re emergence of Chikungunya virus in South-east Asia: virological evidence from Sri Lanka and Singapore(Cambridge University Press, 2010) Hapuarachchi, H.C.; Bandara, K.B.A.T.; Sumanadasa, S.D.; Hapugoda, M.D.; Lai, Y.L.; Lee, K.S.; Tan, L.K.; Lin, R.T.; Ng, L.F.; Bucht, G.; Abeyewickreme, W.; Ng, L.Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n=1), India (n=2) and Malaysia (n=31). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.