Medicine
Permanent URI for this communityhttp://repository.kln.ac.lk/handle/123456789/12
This repository contains the published and unpublished research of the Faculty of Medicine by the staff members of the faculty
Browse
2 results
Search Results
Item Mutational analysis of driver and non-driver mutations of Philadelphia chromosome-negative myeloproliferative neoplasms;diagnosis and recent advances in treatment(Science Publications, 2024) Afolabi, B.O.; Riwaz, A.; Weerasena, J.; Williams, S.; Denipitiya, T.; Somawardana, B.; Faizan, M.; Galhena, B.P.Myeloproliferative neoplasms (MPNs) are hematological disorders affecting myeloid stem cells. They are classified as Philadelphia (Ph) chromosome positive-chronic myeloid leukemia, and Ph-negative polycythemia vera, essential thrombocythemia, primary myelofibrosis, chronic neutrophilic leukemia, chronic eosinophilic leukemia, juvenile myelomonocytic leukemia, and MPN unclassifiable. This review is mainly focused on the Ph-negative MPNs namely, PV, ET, and PMF. These affect both males and females with a slight male predominance, with patients mainly presenting in the seventh decade. Patients often present with thrombotic events resulting in complications that lower survival rates. The major driver mutations that have been identified in MPNs are JAK2 Exon 14, JAK2 Exon 12, MPL Exon 10, and CALR Exon 9. The importance of these driver mutations gives due recognition to their inclusion into the 2022 diagnostic criteria of the MPN WHO Classification. However, other non-driver mutations have also been reported, especially in triple-negative cases. These mutations lead to downstream constitutive activation of the JAK/STAT signaling pathway, as well as the MAPK, and PI3K/Akt pathways. Insights into the molecular pathogenesis of MPN and its association with JAK2, CALR, and MPL mutations have identified JAK2 as a rational therapeutic target. Thus, as an approach to MPN therapy, JAK2 inhibitors, such as ruxolitinib, have been shown to effectively inhibit JAK2, and are currently in clinical trials in combination with other drug classes. This review comprehensively examines the molecular markers of the main Ph-negative MPNs, as well as diagnosis and treatment options.Item In silico identification and in vitro validation of alpha-hederin as a potent inhibitor of Wnt/β-catenin signaling pathway in breast cancer stem cells.(Springer-Verlag, GmbH, 2024) Saliu, T.P.; Seneviratne, N.N.; Faizan, M.; Rajagopalan, U.; Perera, D.C.; Adhikari, A.; Senathilake, K.S.; Galhena, P.B.; Tennekoon, K.H.; Samarakoon, S.R.Cancer stem cells (CSCs) play a vital role in metastasis, recurrence and chemoresistance in breast cancer. β-catenin, which is a frequently over activated protein in CSCs, binds to T-cell factor/lymphoid enhancer factor (Tcf/Lef) family transcription factors leading to ectopic expression of Wnt pathway responsive genes necessary for the maintenance and action of CSCs. With the aim of identifying a small molecules that can effectively eliminate CSCs, molecular docking studies were performed against the Tcf/Lef binding hotspot on β-catenin using a library of 100 natural or synthetic small molecules. Small molecule ligands giving docking energy better than - 7 kcal/mol were further investigated by binding interactions analysis and molecular dynamics (MD) simulations. These compounds were then investigated in vitro, for cytotoxicity against CSCs isolated from MDA-MB-231 triple negative breast cancer cells. Alpha-hederin (AH) was identified as the only compound in the selected library that has cytotoxicity against breast CSCs. AH was further investigated for it's ability to regulate Wnt pathway target genes (Cyclin D1 and CD44)and the tumor suppressor p53by real-time quantitative PCR. Absorption, distribution, metabolism, excretion and toxicity properties of the AH was predicted in silico. AH significantly down regulated the transcription of Cyclin D1 and CD44 while up-regulating the transcription of p53. AH was predicted to have acceptable drug likeness. Although AH is currently known to inhibit the growth of various cancer cells in vitro, present study demonstrated for the first time that it is a potent inhibitor of Wnt/β-catenin signaling pathway and induce apoptosis in breast CSCs.