Medicine
Permanent URI for this communityhttp://repository.kln.ac.lk/handle/123456789/12
This repository contains the published and unpublished research of the Faculty of Medicine by the staff members of the faculty
Browse
4 results
Search Results
Item Community-based snakebite risk mapping for resource prioritisation in Eastern province, Rwanda(Oxford University Press, 2025-01) Ediriweera, D.S.; Hakizimana, D.; Diggle, P.J.; Schurer, J.M.BACKGROUND Snakebite envenoming is a medical emergency that requires rapid access to essential medicines and well-trained personnel. In resource-poor countries, mapping snakebite incidence can help policymakers to make evidence-based decisions for resource prioritisation. This study aimed to characterise the spatial variation in snakebite risk, and in particular to identify areas of relatively high and low risk, in Eastern Province, Rwanda.METHODS Snakebite surveillance of people bitten in 2020 was conducted in Eastern Province through household visits and case verification. Geostatistical modelling and predictive mapping were applied to data from 617 villages in six districts to develop sector-level and district-level risk maps.RESULTS There were 1217 individuals bitten by snakes across six districts. The estimated population-weighted snakebite incidence in Eastern Province was 440 (95% predictive interval 421 to 460) cases per 100 000 people, corresponding to 13 500 (95% predictive interval 12 950 to 14 150) snakebite events per year. Two sectors in the southwest, Gashanda and Jarama, showed >1500 snakebite events per 100 000 annually. The lowest incidence was observed in the north.CONCLUSIONS Considerable differences exist in snakebite risk between sectors in Eastern Province, with the highest risk concentrated in the southwest. Policymakers should consider prioritising resources related to snakebite prevention, essential medicines and health worker training in this regionItem Integrating snake distribution, abundance and expert-derived behavioural traits predicts snakebite risk(Wiley-Blackwell, 2022) Martín, G.; Erinjery, J.; Gumbs, R.; Somaweera, R.; Ediriweera, D.; Diggle, P.J.; Kasturiratne, A.; de Silva, H.J.; Lalloo, D.G.; Iwamura, T.; Murray, K. A.Despite important implications for human health, distribution, abundance and behaviour of most medically-relevant snakes remain poorly understood. Such data deficiencies hamper efforts to characterise the causal pathways of snakebite envenoming and to prioritise management options in the areas at greatest risk. We estimated the spatial patterns of abundance of seven medically-relevant snake species from Sri Lanka, a snakebite hotspot, and combined them with indices of species’ relative abundance, aggressiveness and envenoming severity obtained from an expert opinion survey to test whether these fundamental ecological traits could explain spatial patterns of snakebite and envenoming incidence. The spatial intensity of snake occurrence records in relation to independent environmental factors (fundamental niches and land cover) was analysed with point process models. Then, with the estimated patterns of abundance, we tested which species’ abundances added together, with and without weightings for aggressiveness, envenoming severity and relative abundance, best correlate with per-capita geographic incidence patterns of snakebite and envenoming. We found that weighting abundance patterns by species’ traits increased correlation with incidence. The best performing combination had three species weighted by aggressiveness and abundance, with a correlation of r = 0.47 (P < 0.01) with snakebite incidence. An envenoming severity and relative abundance-weighted combination of two species was the most strongly associated with envenoming incidence (r = 0.46, P = 0). SYNTHESIS AND APPLICATIONS. We show that snakebite risk is explained by abundance, aggressiveness and envenoming severity of the snake species most frequently involved in envenoming cases. Incorporating causality via ecological information of key snake species is critical for snakebite risk mapping, help to tailor preventive measures for dominant snake species and deploy the necessary antivenom therapies.Item Addressing the global snakebite crisis with geo-spatial analyses - Recent advances and future direction(Elsevier Ltd, 2021) Pintor, A.F.V.; Ray, N.; Longbottom, J.; Bravo-Vega, C.A.; Yousefi, M.; Murray, K.A.; Ediriweera, D.S.; Diggle, P.J.ABSTRACT: Venomous snakebite is a neglected tropical disease that annually leads to hundreds of thousands of deaths or long-term physical and mental ailments across the developing world. Insufficient data on spatial variation in snakebite risk, incidence, human vulnerability, and accessibility of medical treatment contribute substantially to ineffective on-ground management. There is an urgent need to collect data, fill knowledge gaps and address on-ground management problems. The use of novel, and transdisciplinary approaches that take advantage of recent advances in spatio-temporal models, 'big data', high performance computing, and fine-scale spatial information can add value to snakebite management by strategically improving our understanding and mitigation capacity of snakebite. We review the background and recent advances on the topic of snakebite related geospatial analyses and suggest avenues for priority research that will have practical on-ground applications for snakebite management and mitigation. These include streamlined, targeted data collection on snake distributions, snakebites, envenomings, venom composition, health infrastructure, and antivenom accessibility along with fine-scale models of spatio-temporal variation in snakebite risk and incidence, intraspecific venom variation, and environmental change modifying human exposure. These measures could improve and 'future-proof' antivenom production methods, antivenom distribution and stockpiling systems, and human-wildlife conflict management practices, while simultaneously feeding into research on venom evolution, snake taxonomy, ecology, biogeography, and conservation. KEYWORDS: Envenomings; Medically relevant snakes; Neglected tropical diseases; Snakebite incidence; Spatio-temporal epidemiology; Species distribution models.Item Evaluating spatiotemporal dynamics of snakebite in Sri Lanka: Monthly incidence mapping from a national representative survey sample(Public Library of Science, 2021) Ediriweera, D.S.; Kasturiratne, A.; Pathmeswaran, A.; Gunawardena, N.K.; Jayamanne, S.F.; Murray, K.; Iwamura, T.; Isbister, G.; Dawson, A.; Lalloo, D.G.; de Silva, H.J.; Diggle, P.J.BACKGROUND: Snakebite incidence shows both spatial and temporal variation. However, no study has evaluated spatiotemporal patterns of snakebites across a country or region in detail. We used a nationally representative population sample to evaluate spatiotemporal patterns of snakebite in Sri Lanka. METHODOLOGY: We conducted a community-based cross-sectional survey representing all nine provinces of Sri Lanka. We interviewed 165 665 people (0.8% of the national population), and snakebite events reported by the respondents were recorded. Sri Lanka is an agricultural country; its central, southern and western parts receive rain mainly from Southwest monsoon (May to September) and northern and eastern parts receive rain mainly from Northeast monsoon (November to February). We developed spatiotemporal models using multivariate Poisson process modelling to explain monthly snakebite and envenoming incidences in the country. These models were developed at the provincial level to explain local spatiotemporal patterns. PRINCIPAL FINDINGS: Snakebites and envenomings showed clear spatiotemporal patterns. Snakebite hotspots were found in North-Central, North-West, South-West and Eastern Sri Lanka. They exhibited biannual seasonal patterns except in South-Western inlands, which showed triannual seasonality. Envenoming hotspots were confined to North-Central, East and South-West parts of the country. Hotspots in North-Central regions showed triannual seasonal patterns and South-West regions had annual patterns. Hotspots remained persistent throughout the year in Eastern regions. The overall monthly snakebite and envenoming incidences in Sri Lanka were 39 (95%CI: 38-40) and 19 (95%CI: 13-30) per 100 000, respectively, translating into 110 000 (95%CI: 107 500-112 500) snakebites and 45 000 (95%CI: 32 000-73 000) envenomings in a calendar year. CONCLUSIONS/SIGNIFICANCE: This study provides information on community-based monthly incidence of snakebites and envenomings over the whole country. Thus, it provides useful insights into healthcare decision-making, such as, prioritizing locations to establish specialized centres for snakebite management and allocating resources based on risk assessments which take into account both location and season.