Browsing by Author "Piyumal, P. L. A. K."
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Autonomous quadcopter-based intelligent irrigation system for enhancing crop care(Faculty of Science, University of Kelaniya Sri Lanka, 2024) Vimansa, W. A. H.; Adhikari, A. M. N. D. S.; Rathnayaka, R. M. P. B.; Dilshan, P. K. S. I.; Attanayake, A. M. V. A.; Randeniarachchi, R. A. N. D.; Hemal, S. B. N. H.; Piyumal, P. L. A. K.; Kumarage, W. G. C.Efficient crop care and high productivity are paramount to meeting global food demands amid a growing population. Leveraging advanced technologies, including precise irrigation systems conserve vital resources such as water, minimize waste, and foster sustainability. Consequently, the study presented focused on developing an intelligent irrigation system with the facility of real-time environmental monitoring to optimize water usage and increase efficiency through precise, data-driven irrigation practices. The methodology involves an autonomous quadcopter (DJI Tello) hovering over a selected land area and a weather station on the ground. The weather station was created using an ESP32 microprocessor equipped with several sensors; a DHT11 sensor, Infrared counting sensor module, Capacitive soil moisture sensor (MD0247), water level sensor (MD0207), and LDR sensor (MD0222) to monitor temperature, humidity, rainfall, wind speed, solar intensity, and soil moisture. Furthermore, a computer vision model was developed using YOLOV8 to identify the selected three crops: Arachis hypogaea, Capsicum annuum, and Antherella Sessilis. The developed irrigation system demonstrated outstanding water delivery performance by effectively reducing wastage of water by 20% and enhancing crop growth rates by 10%. This enhancement is ascribed to real-time environmental monitoring and continuous analysis of data from the sensors of the weather station. Moreover, the acquired data is stored in a database and displayed through a user-friendly web application where the data is precisely analyzed and displayed as a dashboard. Web application is aimed at user convenience providing users with location-based weather forecasts, sensor outputs and user tips while predicting the amount of water needed to be delivered in upcoming months. The findings in the presenting work highlighted significant improvements in both irrigation efficiency and crop yield. This demonstrates its potential to be applied in agriculture more extensively by adapting to different environmental conditions and crop needs. Furthermore, the developed web application integrates real-time monitoring and computer vision, providing actionable insights that democratize agricultural knowledge and improve agricultural outcomes. In conclusion, the findings signify a significant leap forward in agricultural technology, addressing inherent challenges of traditional farming with sustainable solutions. This initiative not only aims to enhance agricultural productivity but also aligns with broader goals of promoting sustainable and environmentally friendly farming practices.Item Comparison of different methods for generating SPWM signal for the development of a pure Sine wave inverter(Faculty of Science, University of Kelaniya Sri Lanka, 2023) Hemal, S. B. N. H.; Dilshan, G. K. D.; Karunarathna, M. A. D. D. S.; Morawakaarachchi, K. N.; Senanayake, S. V.; Premasiri, R. H. M. D.; Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.An inverter is an electronic device which is used for converting Direct Current (DC) to Alternating Current (AC) because AC is the predominant form of electrical power used in homes, businesses, and most electrical appliances. Inverters can be categorized based on the type of waveform that they produce, such as Pure Sine Wave Inverters, Modified Square Wave Inverters and Square Wave Inverters. This paper discusses the development of a Pure Sine Wave Inverter with an output voltage of 230 VRMS and a frequency of 50 Hz using the Sinusoidal Pulse Width Modulation (SPWM) technique. Three SPWM signal generation methods, including analogue comparator, microcontroller, and SPWM driver module methods, were tested. This study presents a method to obtain a 230 VRMS, 50 Hz output sine wave in three steps. The first step involves the generation of an SPWM signal with frequency control, utilizing the DC source supply. The analogue comparator method uses op-amps as the analogue comparator. Then, it compares a reference sinusoidal wave with a high-frequency (in kHz range) carrier triangular wave. The output of the op-amp comparator is SPWM. The frequency of this reference sinusoidal wave is chosen based on the required inverter output frequency (50 Hz). In that process, the comparator gives out a pulse when the voltage of the sine waveform is greater than the triangular voltage, and this pulse is used to trigger the respective inverter switches. When designing a circuit that involves op-amps, the slew rate of the op-amp is a critical consideration. To generate an SPWM signal using an ATmega328p microcontroller, the microcontroller was used to generate a series of PWM signals by digital high and digital low. The corresponding time of each pulse's delay is added using the microsecond function. Increasing and decreasing duty cycle, and then a series of PWM signals. As the pure sine wave inverter SPWM driver module EGS002 was used and, that method was the more accurate method, and a clean SPWM signal was generated with less harmonics. Although this type of inverter board has more features, the circuitry was not complex because of the module. Secondly, we employ the MOSFET H-bridge stage to obtain the desired sine wave output. Finally, the third step focuses on supplying a high DC voltage to the H-bridge circuit, which the DC-DC PWM boost converter generates. Several circuit protections were included to ensure the device's safety and reliability. In the process of SPWM generation, although in the analogue comparator method, op-amps offer a low-cost option, a microcontroller is favoured for its superior precision and ability to handle high-power applications effectively. However, the EGS002 module stands out as the preferred method due to its user-friendly nature, comprehensive protection features, and ability to provide valuable feedback, making it a more economically efficient choice in the overall design.Item Development of an off-grid solar PV system with battery-supercapacitor hybrid energy storage(Faculty of Science, University of Kelaniya Sri Lanka, 2023) Pitigala, P. A. S. P.; Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.; Kalingamudali, S. R. D.In off-grid photovoltaic (PV) systems, the charge controller is a significant device since the system's end-to-end efficiency depends on its efficiency. Currently, the commercially available MPPT charge controllers have an average efficiency of 90%. Supercapacitors' (SCs’) high energy density compared to traditional capacitors makes them used as energy storage devices. But theoretically, 50% of energy loss will occur in the capacitor charging loop if we charge it directly connecting to a power supply. According to the supercapacitor-assisted loss management (SCALoM) theory, inserting a useful resistive load into the capacitor charging loop, a portion of the above wasted 50% of energy can be utilised for beneficial work. This paper proposes a novel off-grid PV system with a battery-SC hybrid energy storage. This system utilises the SCALoM theory using the combination of a charge controller and battery as the useful load in the capacitor charging loop, while PV panels are used as the external power source. To achieve maximum use of the SCALoM theory, the SC must be kept under partially charged condition. An electronic switching network consisting of nine electronic switches was designed to realise this. Two SC banks, SC-1 and SC-2 were embedded in the prototype system. The proposed system operates in four different modes: SC-1 charging mode, SC-2 charging mode, SC bypass mode, and night mode. These modes are defined by the state of each switch in the switching network and the voltage of both SC banks. In SC-1 and SC-2 charging modes, the relevant SC bank is connected in series with the PV panels and charge controller while a DC load is connected in parallel to the SC bank. In this mode, the remaining SC bank is discharged through another DC load. In SC bypass mode, the operation of the system is the same as the typical off-grid PV system because both SC-1 and SC-2 are disconnected from the system so that the PV panels are connected in parallel with the charge controller. In this mode, DC loads are connected to the battery. In night mode, an SC bank is connected in series to the PV array and the charge controller and DC loads are connected to the battery again. For maximum utilisation, this system must be operated in SC- 1 and SC-2 charging modes as much as possible throughout the day. The overall operation of the system is controlled by microcontroller-based control circuitry. This system achieved end-to-end efficiencies of 87.36%, 87.50%, 75.68%, and 93.28%, respectively, for SC-1 charging, SC-2 charging, SC bypass, and night modes, respectively. Therefore, it can be concluded that the endto- end efficiency of an off-grid PV system can be increased by implementing a supercapacitor in a series configuration to the solar panel and to the charge controller.Item Efficiency Optimization of Supercapacitor Assisted Low Dropout (SCALDO) Regulators(IEEE, 2020-12) Jayasekara, L. D. P. S.; Piyumal, P. L. A. K.; Ranaweera, A L A K.; Kalingamudali, S.R.D.This study was primarily focused on presenting a novel method to enhance the efficiency of Supercapacitor Assisted Low Dropout (SCALDO) regulators. The main objective was to study SCALDO regulators under a specifically controlled condition where supply voltage is less than twice of the required minimum voltage for Low Dropout (LDO) regulators. Furthermore, design modifications to the switching controlling algorithm were performed to optimize number of capacitors with respect to the supply voltage in order to enhance the efficiency of SCALDO regulators. It was theoretically proven that the efficiency decline can be successfully reduced by varying the number of capacitors connected, according to the supply voltage and the minimum input voltages. The theoretical efficiency calculated for the proposed SCALDO technique falls within 81.5% - 88% range, which is well above the previously reported values. This was verified experimentally with the prototype developed using 2.7 V, 10 F supercapacitors, 5-3.3 V LDO. © 2020 IEEE.Item Enhancing UPS battery life through C-rate control with a supercapacitor-assisted battery management system(Faculty of Science, University of Kelaniya Sri Lanka, 2024) Ramesh, J. M. D. A.; Gunawardana, K. D. B. H.; Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.; Kalingamudali, S. R. D.Battery management systems (BMS) are essential for optimizing the efficiency and dependability of batteries. BMS employs various methodologies and techniques for state of health (SOH) determination, state of charge (SOC) estimation, cell balancing, voltage regulation, current regulation, and overload prevention. This study aims to create a Supercapacitor Assisted Battery Management System (SCABMS) to enhance battery performance and lifespan using a C-rate controlled system by analyzing battery dynamics and load demands. The suggested Battery Management System (BMS) incorporates supercapacitors (SCs) to effectively handle sudden increases in power demand, thereby lessening stress on the main battery and improving its overall lifespan. Previous research indicates that reducing the Crate extends battery lifespan. The C-rate control method is used to manage battery discharge, with the system functioning in two modes depending on the load current. The first is when the load is drawing less than the set current where the load current is completely drawn from the battery without the SC assistant. When the load current exceeds the set current value, the current control circuit begins to limit the battery current for the selected value. In this scenario, the load voltage drops, and the parallel connected buck-boost converter is used to fix the load voltage into the rated value by supplying the rest of the load current. The buck-boost converter output voltage is fixed for the load voltage. The implemented prototype incorporates supplementary functionalities encompassing cell balancing, voltage regulation, current regulation, and overload protection within its BMS. The real-time current and voltage monitoring system was integrated into BMS to ensure a constant C-rate in charging/discharging cycles. Also, the battery's operating periods with and without the Battery Management System (BMS) under the same load circumstances should be compared. This technology successfully reduces power fluctuations and guarantees safe equipment shutdown in case of a power outage. The results indicate a well-maintained c-rate and show the potential of integrating SCABMS in high-power-demanding situations, subject to improvements in efficiency and practicality.Item Investigation of a multi-hop wireless power transfer based on repeater coils(Faculty of Science, University of Kelaniya Sri Lanka, 2024) Jayasekara, R. S. N.; Ranaweera, A. L. A. K.; Piyumal, P. L. A. K.Traditional wireless power transmission systems have limitations in distance and efficiency. The proposed multi-hop wireless power transmission systems (Multi-Hop WPT systems) address these issues with the use of intermediate repeater coils as power hop nodes. A multi-hop wireless power transmission system (Multi-Hop WPT) works by using a series of repeater coils where power is hopping between nearby nodes. The initial source transmits power in the form of electromagnetic waves and the first node captures it. This first node gathers the power and retransmits toward the next hop or the final destination. The methodology involved several key steps. The methodology of this study followed a systematic approach in designing, constructing, and evaluating a multi-hop wireless power transmission (Multi-Hop WPT) system. Two resonator coils were designed as the transmitter and receiver, with their dimensions and material properties optimized for efficient wireless power transfer. The system was tuned to operate within the ISM frequency band, ensuring regulatory compliance. Intermediate hop nodes were strategically placed to enhance range and efficiency. The system's performance was tested using a vector network analyzer (VNA), and power transfer efficiency was verified against theoretical expectations, confirming both accuracy and effectiveness. The experimental results demonstrated that the multi-hop wireless power transmission (WPT) system effectively addressed the distance and efficiency limitations of traditional wireless power transmission systems. By employing intermediate repeater nodes, the system successfully transmitted power over extended distances with minimal loss. Moreover, the design exhibited significant potential for scalability and flexibility, paving the way for future advancements. The study proposed further improvements through the development of an advanced multi-hop node, incorporating a power receiver coil, RF to DC converter (Radio Frequency to Direct Current Converter), power amplifier, and re-transmitter coil, which could enhance system efficiency, range, and scalability, positioning multi-hop wireless power transmission systems as a promising alternative for various applications.Item Investigation of MPPT in photovoltaic systems with step-down DC-DC converter and supercapacitor energy storage(Faculty of Science, University of Kelaniya Sri Lanka, 2024) Premasiri, R. H. M. D.; Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.; Kalingamudali, S. R. D.This study explores the implementation of Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems integrated with a step-down DC-DC converter and supercapacitor (SC) based energy storage. The integration of renewable energy sources, particularly solar power, necessitates highly efficient energy conversion and storage mechanisms to maximise the utility of the harvested energy. MPPT techniques play a pivotal role in optimising the power output of PV systems by dynamically adjusting the operating point to extract the maximum possible power under varying environmental conditions. SCs, with their high charge and discharge rates and high power density, emerge as a promising storage solution to manage the intermittent and variable energy output characteristic of PV systems. A Constant Voltage (CV) MPPT algorithm is employed to fine-tune the power output and ensure maximum energy efficiency. The experimental setup comprises a Solar Array Simulator simulating the PV array, interfaced with a step-down DC-DC converter, and an SC configured as the load. The system's performance is analysed by observing the available, actual and output power using a power analyser and evaluated to ascertain the robustness and effectiveness of the MPPT algorithm. The research distinguishes itself by utilising SCs as the primary load, an approach not commonly adopted in previous studies. Few studies have investigated the use of SCs exclusively as the load, and those that have indicated that MPPT is not efficiently achieved under such conditions. However, the analysed results affirm that the system proficiently tracks the maximum power point, attaining an average MPPT efficiency of 94.88% when the system is integrated with the CV MPPT algorithm. The average conversion efficiency attained was 75.62% with a basic DC-DC step-down converter constructed on a solderless board. It is anticipated that this MPPT efficiency will further improve with the application of more sophisticated MPPT algorithms such as Perturb and Observe (P&O), Incremental Conductance (IncCond), and Hill Climbing (HC). The average conversion efficiency can be increased by fine-tuning the converter and implementing more advanced topologies of DC-DC stepdown converters. This research makes a substantial contribution to advancing high-efficiency and dependable PV energy storage systems, underscoring the practical viability of SCs as an energy storage device. Furthermore, these findings have significant implications for SC-assisted Heating, Ventilation, and Air Conditioning (HVAC) systems integrated with PV systems, where efficient MPPT can enhance overall system performance as MPPT can be tracked when using the SC as the storage. Prospective studies will examine the long-term stability and scalability of this innovative approach in larger-scale PV installations, paving the way for more resilient and efficient renewable energy systems.Item Maximum Power Point Tracking of an Off-grid Photovoltaic System Consisting of a Series Connected Supercapacitor with a Step-down Converter(The Electrochemical Society, 2022) Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.; Kalingamudali, S. R. D.; Kularatna, N.An off-grid photovoltaic (PV) system's PV array is connected with a charge controller as the first power conversion stage. The average efficiency of the power stage of charge controllers is around 90%. Supercapacitor (SC) - battery hybrid PV system is a novel PV system that utilizes some of the wasted energy of a typical system and enhances the system's efficiency up to 98%. However, the feasibility of maximum power point tracking (MPPT) for this system is yet to be validated. This paper presents a comparative study to adapt MPPT for the proposed system consisting of a series- connected SC bank with PV array and step-down DC-DC converter. The step-down converter is used as the impedance matching network. Different solar irradiance profiles were emulated to check the feasibility and efficiency of MPPT. Experimentally, it was shown that the typical MPPT could be adapted to the proposed PV system with very high MPPT efficiency.Item Novel slow switching technique for efficient solar energy harnessing for off grid photovoltaic systems(proceedings of the 4th International Research Symposium on Pure and Applied Sciences 2019, Faculty of Science, University of Kelaniya, Sri Lanka, 2019) Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.; Kalingamudali, S. R. D.; Kularatna, N.Electricity consumers in remote areas where the grid connection is not available rely on diesel generators or off grid photovoltaic (P V) systems. These PV systems uses battery banks as backup energy storage. Those battery banks are charged by using a battery charge controller connected to a PV array. Because of the recent advances in solar charge controllers, they can reach maximum of 90% charging efficiency, where 10% will be unutilized. Since the efficiency of conventional solar panels lies around 20-25% which is relatively low as compared to other energy generation methods, it is important to utilize as much energy as possible produced by the solar panels. Also, when driving loads, energy stored in the battery bank again goes through a converter or inverter by wasting considerable amount of useful energy. Hence, the purpose of this study is to minimize the energy loss of the charging process of the battery bank while using the energy produced by the PV array in an effective manner. In previous publications, it was introduced a novel way of using supercapacitors (SCs) in an off grid PV system. When charging an empty capacitor in parallel with a source, 50% of energy is wasted irrespective of the value of total loop resistance. In contrast, by connecting a SC bank in series with a typical solar charge controller, it was shown that the energy loss of the combined system is less than the energy loss of parallelly connected SC bank and the battery bank in their individual systems. Experimentally, it has been shown that a 9% increment in overall charging efficiency of the combined system when a charge controller having 80% of efficiency is used to charge the battery bank in typical off grid PV system. The present study introduces a possible method of utilizing the energy stored in SC bank in an effective manner using an intelligent electronic switching scheme. The proposed method uses a second SC bank along with the existing one along with a smart electronic switching circuitry which is able to switch each SC bank between charging or discharging stages when necessary. When one SC bank is in its charging state, the other SC bank will be in its discharging state through a proper load. After that, when the first SC bank is fully charged or the second SC bank is fully discharged, positions of each SC bank is swapped so that the second SC bank will start its charging process while the first SC bank is now discharging through the load. This way both charging and discharging of SC bank can be done efficiently while charging the battery bank in the system by the same manner.Item Optimising energy efficiency in a PV-enabled base transceiver station(Faculty of Science, University of Kelaniya Sri Lanka, 2023) Jayasooriya, J. A. T. D.; Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.The need for green energy sources has become paramount in the modern world due to the environmental hazards of non-green alternatives. Essential services, including the telecommunication industry, must also align with this goal. As foundational elements of the telecommunications network, base transceiver stations offer a ripe opportunity to integrate green energy solutions. However, the prevalent scenario reveals that many of these stations continue to rely on conventional grid-based power sources, with only a limited fraction equipped with standalone photovoltaic (PV) systems. This study addresses a pressing challenge in integrating standalone PV systems with base transceiver stations. Central to this challenge is the conundrum of power generation backups, specifically during the morning hours, when the battery reserves charged by the PV systems are frequently depleted. This operational gap necessitates the deployment of supplementary power generators, imposing substantial operational costs that diminish the cost-efficiency advantages anticipated with the introduction of PV systems. The methodology involved a detailed analysis of the selected base transceiver station's total DC power consumption patterns from 15th May 2023 to 21st May 2023. These insights guided the design of an efficient energy harvesting system enriched with a supercapacitor-battery hybrid energy storage arrangement. A Maximum Power Point Tracking (MPPT) controller was acquired to optimise system performance; its effectiveness was verified through efficiency calculations and PV array emulator Irradiance Profiles, and its efficiency exceeded 90%. An intelligent power management strategy was implemented, automatically switching to consume supercapacitor (SC) energy when the voltage level exceeds a threshold, conserving battery bank energy, ensuring uninterrupted operation, and extending battery lifespan. The prototype's operational modes, including neutral, SC charge recovery, and SC bypass, have been successfully demonstrated. Results indicate that the suggested photovoltaic system prototype effectively tracks the PV array's maximum power point (MPP), comparable to standard systems using traditional MPPT algorithms. This novel system promises to not only obviate the need for extensive generator backups but also potentially reduce their capacity compared to conventional configurations. Realising a green energy-powered telecom network is a vast and complex process, demanding guaranteed performance and cost-effectiveness for a period of at least about 15 years. This research marks a significant milestone in advancing green energy solutions and highlights the crucial role of base transceiver stations in establishing a sustainable telecommunication infrastructure. Embracing eco-friendly technologies is essential in safeguarding our planet and ensuring a brighter future for generations to come.Item Supercapacitor assisted LED (SCALED) lighting system with grid connection(Faculty of Science, University of Kelaniya Sri Lanka, 2024) Kumara, W. R.; Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.; Kalingamudali, S. R. D.Photovoltaic (PV) systems are increasingly popular as the world shifts to sustainable energy. Generally, there are three main types of PV systems. The SCALED system consists of a PV panel, a Supercapacitor (SC) bank, and an LED. Utilizing the Supercapacitor-Assisted Loss Management (SCALoM) theory, the SCALED system integrates an SC bank and LED bulb to reduce energy loss during charging. Solar energy is stored in the SC bank and released to ensure the LED remains powered. However, the current SCALED system, with oversized solar panels and SC banks, is inefficient if it can't power LEDs at night or in adverse weather. To address this, an innovative approach is proposed by integrating the SCALED system with the grid for reliable energy storage and continuous LED illumination. In this innovative method, the SC bank and LED are connected in series with PV panels or grid connection in the SC charging loop. The system has two identical loops connected in parallel with the PV panels or grid. One SC bank charges while the other discharges, ensuring the LED bulbs remain powered. An electronic switching network with two SC banks manages four operational modes to optimise energy utilisation. These modes include alternating charging and discharging loops. A microcontroller-based control circuitry operates the system, which connects to the grid via a Switch Mode Power Supply (SMPS). A current sensor measures the current of the solar panel output. During adverse weather, the system switches to the grid when the output current drops solar panels below a threshold, isolating the solar panel. In the Developed SCALED system, MOSFETs efficiently manage power flow between the SC bank and LEDs, minimizing losses. Microcontrollers optimize energy use by controlling MOSFETs and monitoring voltage, and current levels, ensuring reliable LED operation even in adverse conditions. This improves overall system efficiency and reliability. When the solar panel output current exceeds the threshold value, the system will connect the solar panels and isolate the SMPS from the system. The system achieves a high charging efficiency of around 95%. Operational in all weather conditions and at night, the system ensures consistent LED illumination, enabling normal user operation regardless of weather during day and night.Item Supercapacitor based novel approach for efficient solar energy harnessing(Research Symposium on Pure and Applied Sciences, 2018 Faculty of Science, University of Kelaniya, Sri Lanka, 2018) Piyumal, P. L. A. K.; Ranaweera, A. L. A. K.; Kalingamudali, S. R. D.; Kularatna, N.Finding greener solutions through renewable energy sources to provide energy demand in 21st century is an important task due to the shortage of world energy sources. From many types of renewable energy sources, photovoltaic cell is the most popular device that can be used to harvest solar energy and produce electricity. Currently, efficiency of conventional solar panels lies between 20-25%. In addition, part of energy is lost during the power conversion process in solar power converters. Standalone photovoltaic systems used in houses and other buildings in remote areas employ solar charge controllers to charge their battery banks in order to store energy. Efficiency of these systems relies mostly on the efficiency of in built DC-DC converter of the charge controller. With the advancement of modern semiconductor technologies and electronics, maximum of 90% efficiency can be achieved by a brand new solar charge controller. Usually this value will be decreased with the years of usage. Hence, the purpose of this work is to minimize the energy wasted during charging process of the battery bank of a standalone photovoltaic system. The initial approach was to connect DC-DC converter and battery bank in series with a capacitor charging loop. When an empty capacitor is charged by delivering Q charge using an external source, it can theoretically be shown that 50% of energy will be lost in the charging loop regardless of the resistance of the loop. If a useful resistive load is attached to the capacitor charging loop in series, this wasted energy can be effectively utilized by doing a treasured work while charging the capacitor too. In this work, this basic concept was used by replacing the conventional capacitor from a supercapacitor and attaching the DC-DC converter and the battery bank as the useful resistive load. Thereby, charging both supercapacitor and battery bank has been done. Theoretical analysis of this novel method shows promising outcomes on achieving high charging efficiency. Experimental results show this technique increases the overall charging efficiency of a standalone photovoltaic system by 9% when 80% efficient DC-DC converter is used to charge the battery bank. Therefore, it can be concluded that the overall charging efficiency of a typical standalone photovoltaic system can be enhanced by adding supercapacitor in series. The energy stored in both devices could be used to drive DC or AC loads using necessary electronics.