Supercapacitor assisted LED (SCALED) lighting system with grid connection
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Faculty of Science, University of Kelaniya Sri Lanka
Abstract
Photovoltaic (PV) systems are increasingly popular as the world shifts to sustainable energy. Generally, there are three main types of PV systems. The SCALED system consists of a PV panel, a Supercapacitor (SC) bank, and an LED. Utilizing the Supercapacitor-Assisted Loss Management (SCALoM) theory, the SCALED system integrates an SC bank and LED bulb to reduce energy loss during charging. Solar energy is stored in the SC bank and released to ensure the LED remains powered. However, the current SCALED system, with oversized solar panels and SC banks, is inefficient if it can't power LEDs at night or in adverse weather. To address this, an innovative approach is proposed by integrating the SCALED system with the grid for reliable energy storage and continuous LED illumination. In this innovative method, the SC bank and LED are connected in series with PV panels or grid connection in the SC charging loop. The system has two identical loops connected in parallel with the PV panels or grid. One SC bank charges while the other discharges, ensuring the LED bulbs remain powered. An electronic switching network with two SC banks manages four operational modes to optimise energy utilisation. These modes include alternating charging and discharging loops. A microcontroller-based control circuitry operates the system, which connects to the grid via a Switch Mode Power Supply (SMPS). A current sensor measures the current of the solar panel output. During adverse weather, the system switches to the grid when the output current drops solar panels below a threshold, isolating the solar panel. In the Developed SCALED system, MOSFETs efficiently manage power flow between the SC bank and LEDs, minimizing losses. Microcontrollers optimize energy use by controlling MOSFETs and monitoring voltage, and current levels, ensuring reliable LED operation even in adverse conditions. This improves overall system efficiency and reliability. When the solar panel output current exceeds the threshold value, the system will connect the solar panels and isolate the SMPS from the system. The system achieves a high charging efficiency of around 95%. Operational in all weather conditions and at night, the system ensures consistent LED illumination, enabling normal user operation regardless of weather during day and night.
Description
Keywords
SCALED system, SCALoM concept, SMPS, Solar Energy, Supercapacitor
Citation
Kumara W. R.; Piyumal P. L. A. K.; Ranaweera A. L. A. K.; Kalingamudali S. R. D. (2024), Supercapacitor assisted LED (SCALED) lighting system with grid connection, Proceedings of the International Conference on Applied and Pure Sciences (ICAPS 2024-Kelaniya) Volume 4, Faculty of Science, University of Kelaniya Sri Lanka. Page 112