Digital Repository

On the Integer Roots of Polynomial Equation

Show simple item record

dc.contributor.author Dharmasiri, K.G.E.U.
dc.contributor.author Dahanayaka, S.D.
dc.contributor.author Piyadasa, R.A.D.
dc.date.accessioned 2015-06-11T08:27:43Z
dc.date.available 2015-06-11T08:27:43Z
dc.date.issued 2012
dc.identifier.citation Dharmasiri, K.G.E.U., Dahanayaka, S.D. and Piyadasa, R.A.D., 2012. On the Integer Roots of Polynomial Equations, Proceedings of the Annual Research Symposium 2012, Faculty of Graduate Studies, University of Kelaniya, pp 39-40. en_US
dc.identifier.uri
dc.identifier.uri http://repository.kln.ac.lk/handle/123456789/8194
dc.description.abstract Integer solutions of polynomial equations are very important in number theory. However, solutions of general polynomial equations of degree five or higher than five cannot be solved in radicals due to Abel-Ruffini theorem. Even in case of a quadratic equation, it is not easy at all to discard all integer solutions without knowing the coefficients of the independent variable. For example, the simple cubic 5 12 0 3 2     q bx x x , where 1) , 2( q , has no integer roots. But, even in this case, it is not easy to justify this fact right away. The simple theorem is given in this paper which is capable of discarding integer roots of this equation at once. This theorem and the lemma [1] which was used in a previous paper are capable of discarding all integer roots of a special class of polynomial equations of any degree. Solution of polynomial equations First of all we consider simple statements with respect to the quadratic equation 0 2 ax  bx  c  (1) The equation (1) has no integer roots if c ba, , all are odd or c is odd and ba, are of the same parity. In general, the polynomial equation ... 0, 1 1 0 1        n n n n a x a x a x a has no integer roots if na is odd and 0 1 1 , ,..., n a a a are even. Let us call this simple theorem, the theorem of odd parity. This follows at once since zero is even and integer roots of the equation are odd factor of n a . From (1) and the theorem of odd parity, we can deduce that b 4ac 2    cannot be an integer when a,b,c all are odd. Now consider the polynomial equation of the form    0 p p x pbx c (2) It can be shown that this polynomial equation (2) has no integer roots for any odd prime p , where (p,b)  (p,c) 1. By the theorem of odd parity, the equation has no integer roots when c and b are odd. If a is an integer root of the equation, then we must have a  c  pba  0 It is clear that 0(mod ) 2 a c p p p   . This condition can’t be satisfied since (ba, p) 1 and hence the equation (2) cannot have integer roots. The equation of the type     0, p m p p pm x p bx c d p (3) where 1m , 1) , ( pcd , has no integer roots. If x is an integer root, ) (mod 0 p p m x  c  p and therefore 0(mod ) 1   m x c p and we can write j pc x m1   , where j is an integer co-prime to .p Now, we can write m p m m p p pm c  p j  p b c  p j  c  d p    [( ) ]( ) 1 1 1 and hence we must have    0 pm p p p pm p j d p which implies p divides j . This is a contradiction and we deduce that the equation (3) has no integer roots. en_US
dc.language.iso en en_US
dc.publisher University of Kelaniya en_US
dc.title On the Integer Roots of Polynomial Equation en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Advanced Search

Browse

My Account