Please use this identifier to cite or link to this item: http://repository.kln.ac.lk/handle/123456789/24390
Title: Prediction of Mechanical Properties of Steel Nanowires using Molecular Dynamics
Authors: Nadeesha, Tharundi M.D.
Liyanage, J.K.
Liyanage, Laalitha S. I.
Keywords: Nanowires, Uniaxial tensile test
Issue Date: 2021
Publisher: Faculty of Computing and Technology, University of Kelaniya, Sri Lanka
Citation: Nadeesha, Tharundi M.D., Liyanage, J.K and Liyanage, Laalitha S. I. (2021). Prediction of Mechanical Properties of Steel Nanowires using Molecular Dynamics. In : 6th International Conference on Advances in Technology and Computing (ICATC–2021). Faculty of Computing and Technology, University of Kelaniya, Sri Lanka, p.9.
Abstract: Nanowires have received increasing interest due to their unique properties and potential applications [1]. Limited studies have been conducted on tensile strength and mechanical properties of pure iron and iron alloy-based nanowires using simulations. In this study, the dependence of the mechanical properties of steel nanowires with different carbon percentages at varying temperatures is investigated. Atomic interactions between Fe and C atoms are modelled using interatomic force fields for molecular dynamics (MD) simulations. Four interatomic potentials were evaluated [2][3][4][5][6] using their bulk properties. Modified embedded atom method (MEAM) potential by Liyanage et al. was selected due to its accuracy in predicting properties of BCC Fe, Fe-C in B1 rock salt structure, and properties of BCC iron structure with varying C percentages. Uniaxial tensile test simulations at varying C atom percentages and different temperatures are conducted using MD simulations with the LAMMPS package. The amount of C was varied from 0 – 10 % at temperatures ranging from 0.1 K – 900 K. Mechanical properties of steel nanowires were extracted from the stress-strain curves generated by the tensile simulations. Young’s modulus of the steel nanowires increased in the temperature range of 0.1 K – 300 K while decreased in the range of 600 K - 900 K with respect to the C %. Yield stress and Ultimate Tensile Stress gradually decreased with the increase of C atoms from 0 – 10 %. Predicted results were compared with the results of bulk steel experimental values [7]. The micro-structural changes in the nanowires were analysed with common neighbor analysis (CNA). CNA showed the rapid formation of slip planes with increasing C% and increased propagation of slip planes contributes to the reduction in the strength of the nanowires.
URI: http://repository.kln.ac.lk/handle/123456789/24390
Appears in Collections:ICATC–2021

Files in This Item:
File Description SizeFormat 
6.pdf350.21 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.