Please use this identifier to cite or link to this item: http://repository.kln.ac.lk/handle/123456789/21105
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRamyasoma, H.P.B.K.D.
dc.contributor.authorDassanayake, R.S.
dc.contributor.authorHapugoda, M.
dc.contributor.authorCapurro, M.L.
dc.contributor.authorSilva Gunawardene, Y.I.N.
dc.date.accessioned2020-06-02T06:48:18Z
dc.date.available2020-06-02T06:48:18Z
dc.date.issued2020
dc.identifier.citationRNA biology.2020;17(7):918-929. Epub 2020en_US
dc.identifier.issn1547-6286 (Print)
dc.identifier.issn1555-8584 (Electronic)
dc.identifier.issn1547-6286 (Linking)
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/21105
dc.descriptionIndexed in MEDLINEen_US
dc.description.abstractABSTRACT:Dengue viruses (DENV) are the wildest transmitted arbovirus members of the family Flaviviridae, genus Flavivirus. Dengue viruses are composed of four serotypes, DENV1, 2, 3, and 4, and these viruses can cause dengue fever and dengue haemorrhagic fever or dengue shock syndrome, when infecting humans. RNA interference (RNAi) is a self-defence mechanism, which can be used to prevent invasions of RNA viruses to the host. Genetically engineering a host with an RNAi molecule that targets a single virus serotype may develop escape mutants, and can cause unusual dominance over other serotypes. Therefore, the simultaneous targeting of multiple serotypes is necessary to block DENV transmission. Here, we report the development of transgenic Aedes aegypti based on a bioinformatically designed multiple miRshRNA (microRNA-based shRNA) DNA sequence under the control of a blood-meal induced promoter, Carboxypeptidase A, to induce RNAi for DENV in Aedes aegypti, and demonstrate the expression of a synthetic multiple shRNA polycistronic cluster having RNA interference sequences to target DENV genomes. The transgenic mosquitoes have lower rates of infection, dissemination, and transmission for DENV2 and DENV4 compared to wild mosquitoes, with a significant reduction of dengue copy number and antigen levels in the midgut. These levels of DENV were low enough to make transgenic mosquitoes stop the DENV transmission from infected host to a susceptible host and refractory to DENV2 and DENV4 infection. Such multiple resistance in Ae. aegypti has not been documented previously. Laboratory fitness measurement of transgenic Ae. aegypti showed results comparable to other reported transgenic mosquitoes. KEYWORDS: RNA interference; aedes aegypti; dengue disease; multiple miRshRNA; piggyBacen_US
dc.language.isoen_USen_US
dc.publisherLandes Bioscienceen_US
dc.subjectDengue Virusen_US
dc.titleMultiple dengue virus serotypes resistant transgenic Aedes aegypti fitness evaluated under laboratory conditions.en_US
dc.typeArticleen_US
Appears in Collections:Journal/Magazine Articles

Files in This Item:
File Description SizeFormat 
Multiple dengue virus serotypes.pdf5.29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.