Please use this identifier to cite or link to this item: http://repository.kln.ac.lk/handle/123456789/14506
Title: Electrodeposited Cu2O homojunction solar cells: Fabrication of a cell of high short circuit photocurrent
Authors: Wijesundera, R.P.
Gunawardhana, L.K.A.D.D.S.
Siripala, W.
Keywords: Electrodeposition
Cuprous oxide
Thin film
Cu2O homojunction
Sulphidation
Issue Date: 2016
Publisher: Elsevier
Citation: Wijesundera, R.P., Gunawardhana, L.K.A.D.D.S. and Siripala, W. 2016. Electrodeposited Cu2O homojunction solar cells: Fabrication of a cell of high short circuit photocurrent. Solar Energy Materials and Solar Cells, 157: 881-886.
Abstract: A Cu2O homojunction solar cell was fabricated using a consecutive electrodeposition method of deposition of an n-Cu2O film followed by a p-Cu2O film, in two different acetate baths. Both n-type and p-type film growth conditions were optimized separately to yield high photocurrents in a photoelctrochemical (PEC) cell. Further, the resulted bi-layer films were investigated in the PEC for the verification of the formation of the p-n homojunction. In addition, p-Cu2O film surfaces of the bi-layers were sulphided using Na2S and (NH4)2S in order to improve the photoresponse of the homojunction before depositing a Au film for the solar cell device. The structural, morphological and optoelectronic properties of the Cu2O films were investigated using X-ray diffraction (XRD), scanning electron micrographs (SEMs), dark and light current–voltage (I-V) and spectral response measurements and observed that the films are of good quality. Incident photon to current efficiency (IPCE) and I-V characteristics of the solar cell device demonstrated that the Cu2O homojunction can produce a high short circuit current density Jsc. However, the overall conversion efficiency of the device is low due to poor fill factor and Voc. The solar cell characteristics of the structure Ti/n-Cu2O/p-Cu2O/Au were Voc=287.0±0.1 mV, Jsc=12.4±0. 1 mA/cm2, FF=25±2% and η=0.89±0.02%, under AM 1.5 illumination. The record high Jsc value of the device demonstrates the prospect being improved the efficiency of Cu2O homojunction solar cells by optimizing deposition, pretreatment and post treatment processes.
URI: http://www.sciencedirect.com/science/article/pii/S0927024816302306
http://repository.kln.ac.lk/handle/123456789/14506
Appears in Collections:Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.