Machine translation system to convert Sinhala and English Braille documents into voice

dc.contributor.authorAnuradha, K. Sasindu
dc.contributor.authorThelijjagoda, Samantha
dc.date.accessioned2021-07-05T11:30:16Z
dc.date.available2021-07-05T11:30:16Z
dc.date.issued2020
dc.description.abstractReading Braille documents are a time-consuming and labor-intensive task. A blind person should touch every Braille letter by his or her fingers. Therefore, high sensitivity in fingers and memorizing every Braille letters are key factors in Braille reading. Due to enhancement in technology, several Optical Character Recognition (OCR) systems have been introduced for different languages in different parts of the world. However, in Sri Lanka, there are no systems that extract Sinhala or English Braille characters using OCR and convert those Braille codes to sound output. The main purpose of the research is to create a system that extracts both Sinhala and English Braille segments from a given Braille document and makes the Braille content into voice. At the beginning Embossed Sinhala or English Braille image which took from webcam or a highresolution phone will use for image processing techniques such as gray scaling, thresholding, erosion, and dilation. Erosion and gray scaling help to eliminate the noise and the noise-free image used to detect contour. After pre-processing, the image using an OpenCV library do the segmentation and character extraction. Braille character recognition has done by taking binary to decimal equivalent numbers. Before generating voice output, recognized Braille letters should convert to corresponding language letters (either Sinhala letter or English) and mapping English letters can directly generate English words but in Sinhala need an additional step called Unicode Mapping to generate a Sinhala word. When a Braille document is in high quality, the system will reach for 95 percent accuracy level and generally, results have around 85.30 percent success rate. This software provides many usability characteristics to increase simplicity when it’s using OpenCV and related technologies. Even teachers can use this to improve their teaching terminologies and explain things more clearly in their lessons.en_US
dc.identifier.citationAnuradha, K. Sasindu , Thelijjagoda, Samantha (2020). Machine translation system to convert Sinhala and English Braille documents into voice. In : International Research Conference on Smart Computing and Systems Engineering, 2020. Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka, p.7.en_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/23066
dc.publisherDepartment of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lankaen_US
dc.subjectBraille letters, Image processing, OCR, Segmentation, Unicode mappingen_US
dc.titleMachine translation system to convert Sinhala and English Braille documents into voiceen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: