A Machine Learning Influenced Recommendation System for Predicting the Rainfall and Price for Crops in Badulla District

dc.contributor.authorNandasiri, K.P. Sasindu Madushan
dc.contributor.authorBanujan, Kuhaneswaran
dc.contributor.authorKumara, B.T.G.S.
dc.contributor.authorJayasinghe, Sadeeka
dc.contributor.authorEkanayake, E.M.U.W.J.B.
dc.contributor.authorSenthan, Prasanth
dc.date.accessioned2023-02-17T04:06:48Z
dc.date.available2023-02-17T04:06:48Z
dc.date.issued2022
dc.description.abstractEvery day, agriculture becomes more vital to the global economy. Daily population expansion necessitates substantial crop output for human existence. But as the population has increased, human activity has also altered the environment. Therefore, it has resulted in challenges with weather forecasting, which is crucial for crop planting in the agricultural sector. Thus, the globe needs a method to forecast agrarian weather. In addition, it is highly advantageous for farmers to understand the production rate they can achieve and the price range they may expect for their efforts. As a result, Machine learning technologies have become unique and fashionable in the agricultural industry due to their ability to provide accurate farming predictions. Selecting suitable plants for planting has evolved into a necessity. This study focuses on the application of machine learning to estimate the optimal crop for a given period. In this work, the author addresses the beginning part of the study: precipitation prediction under the weather forecast and pricing forecast. The authors have employed six distinct machine-learning models to forecast rainfall and crop prices.en_US
dc.identifier.citationNandasiri K.P. Sasindu Madushan; Banujan Kuhaneswaran; Kumara B.T.G.S.; Jayasinghe Sadeeka; Ekanayake E.M.U.W.J.B.; Senthan Prasanth (2022), A Machine Learning Influenced Recommendation System for Predicting the Rainfall and Price for Crops in Badulla District, 7th International Conference on Advances in Technology and Computing (ICATC 2022), Faculty of Computing and Technology, University of Kelaniya Sri Lanka. Page 46 - 51.en_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/25978
dc.publisherFaculty of Computing and Technology, University of Kelaniya Sri Lankaen_US
dc.subjectMachine Learning, Weather Prediction, PricePrediction, Crop Prediction, XGBoosten_US
dc.titleA Machine Learning Influenced Recommendation System for Predicting the Rainfall and Price for Crops in Badulla Districten_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ICATC 2022 9.pdf
Size:
540.99 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections