Testing specific hypotheses by fitting underlying distributions to categorical data

dc.contributor.authorJohnson, W.D.en_US
dc.contributor.authorElston, R.C.en_US
dc.contributor.authorWickremasinghe, A.R.en_US
dc.date.accessioned2014-10-29T09:11:09Z
dc.date.available2014-10-29T09:11:09Z
dc.date.issued1994en_US
dc.descriptionIndexed in MEDLINE
dc.description.abstractThe problem of estimating parameters and testing hypotheses pertaining to categorical data is well known in statistical analysis. Much of the literature on the subject specifies and fits linear models to multinomial data using methods such as weighted least squares. This article describes maximum-likelihood estimation and likelihood ratio tests for ordered categorical response variates with either discrete or continuous underlying probability distributions. Emphasis is on fitting and making inferences about parameters of mixture distributions, especially mixtures of normal distributions. Goodness-of-fit tests are given to check the adequacy of the fitted distributional models.en_US
dc.identifier.citationJournal of Biopharmaceutical Statistics. 1994; 4(1): pp.53-64en_US
dc.identifier.departmentPublic Healthen_US
dc.identifier.issn1054-3406 (Print)en_US
dc.identifier.issn1520-5711 (Electronic)en_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/1201
dc.publisherInforma Healthcareen_US
dc.subjectData Interpretation, Statisticalen_US
dc.subjectLeast-Squares Analysisen_US
dc.titleTesting specific hypotheses by fitting underlying distributions to categorical dataen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: