Identification of water stressed leaves using Artificial Intelligence: The case of eggplant

dc.contributor.authorSenanayake, P.A.
dc.contributor.authorde Silva, R.
dc.date.accessioned2018-08-06T08:14:49Z
dc.date.available2018-08-06T08:14:49Z
dc.date.issued2018
dc.description.abstractIdentification of water stress of leaves from the photos taken has a long history. Researchers have defined a parameter called Leaf Water Content (LWC) to quantify the dryness of leaves. However, in the case of automatic watering of plants, such high accuracy of LWC is not needed as a decision to water or not alone is sufficient. Furthermore, the agricultural industry cannot use methods of remote sensing that are required to find LWC as they are complex and costly. In the current practice, farmers use their knowledge and experience together with the appearance of plants to estimate the water stress and watering time point of plants. The approach presented in this paper is easily implemented and requires only a series of photos taken by a smartphone or a camera and a software app. In this paper, a method s introduced using Artificial Intelligence (AI) where the images of leaves are directly used to determine whether the leaves are water stressed. We could identify the water stressed leaves accurately using this method. Once an app based on our method is developed, it could easily be used by farmers to automatically identify whether the eggplants are water stressed and need watering.en_US
dc.identifier.citationSenanayake,P.A. and de Silva,R. (2018). Identification of water stressed leaves using Artificial Intelligence: The case of eggplant. International Research Conference on Smart Computing and Systems Engineering - SCSE 2018, Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka. p.78.en_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/18960
dc.language.isoenen_US
dc.publisherInternational Research Conference on Smart Computing and Systems Engineering - SCSE 2018en_US
dc.subjectImage classificationen_US
dc.subjectImage filteringen_US
dc.subjectLeaf water contenten_US
dc.subjectLeaf water stress recognitionen_US
dc.titleIdentification of water stressed leaves using Artificial Intelligence: The case of eggplanten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SCSE Proceedings - (78).pdf
Size:
293 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: