Blood Pressure Estimation from Photoplethysmography with Motion Artifacts using Long Short Term Memory Network

dc.contributor.authorWelhenge, Anuradhi
dc.contributor.authorTaparugssanagorn, Attaphongse
dc.date.accessioned2022-08-12T06:36:59Z
dc.date.available2022-08-12T06:36:59Z
dc.date.issued2022
dc.description.abstractContinuous measurement of the Blood Pressure (BP) is important in hypertensive patientsand elderly population. Traditional cuff based methods are difficult to use since it is uncomfortable towear a cuff throughout the day. A more suitable method is to estimate the BP using the Photoplethysmography(PPG) signal. However, it is difficult to estimate a BP when the PPG is corrupted withMotion Artifacts (MAs). In this paper, Long Short Term Memory (LSTM) an extension of RecurrentNeural Networks (RNN) is used used to improve the accuracy of the estimation of the BP from thecorrupted PPG. It shows that an accuracy of 97.86 is achieved.en_US
dc.identifier.citationWelhenge, Anuradhi and Taparugssanagorn, Attaphongse(2022),Blood Pressure Estimation from Photoplethysmography with Motion Artifacts Using Long Short Term Memory Network, Journal of Biomimetics, Biomaterials and Biomedical Engineering (Volume 54), https://doi.org/10.4028/www.scientific.net/JBBBE.54.31en_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/25060
dc.publisherJournal of Biomimetics, Biomaterials and Biomedical Engineering (Volume 54)en_US
dc.subjectDeep Learning, Blood Pressure, Long Short Term Memory, Recurrent Neural Networksen_US
dc.subjectBlood Pressure, Deep Learning, LSTM, RNNen_US
dc.titleBlood Pressure Estimation from Photoplethysmography with Motion Artifacts using Long Short Term Memory Networken_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Blood Pressure Estimation from Photoplethysmography with Motion Artifacts Using Long Short Term Memory Network-1.pdf
Size:
134.14 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections