Journal/Magazine Articles

Permanent URI for this collectionhttp://repository.kln.ac.lk/handle/123456789/13

This collection contains original research articles, review articles and case reports published in local and international peer reviewed journals by the staff members of the Faculty of Medicine

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Setaria digitata in advancing our knowledge of human lymphatic filariasis
    (London School of Hygiene and Tropical Medicine, 2016) Perumal, A.N.; Gunawardene, Y.I.N.S.; Dassanayake, R.S.
    Setaria digitata is a filarial parasite that causes fatal cerebrospinal nematodiasis in goats, sheep and horses, resulting in substantial economic losses in animal husbandry in the tropics. Due to its close resemblance to Wuchereria bancrofti, this nematode is also frequently used as a model organism to study human lymphatic filariasis. This review highlights numerous insights into the morphological, histological, biochemical, immunological and genetic aspects of S. digitata that have broadened our understanding towards the control and eradication of filarial diseases.
  • Thumbnail Image
    Item
    Heterologous expression, chaperone mediated solubilization and purification of parasitic nematode-specific growth factor-like protein of Setaria digitata
    (Asian Pacific Tropical Medicine Press , China, 2014) Rodrigo, W.W.P.; Dassanayake, R.S.; Karunanayake, E.H.; Gunawardene, Y.I.N.S.; Weerasena, O.V.D.S.J.
    OBJECTIVE: To clone, express and purify a putative parasitic nematode specific protein of Setaria digitata (S. digitata), filarial nematode that infects livestock and cause significant economic losses in Far East and Asia to be used for structural and functional analyses. METHODS: To characterize uncharacterized gene of S. digitata (SDUG), the herterologous expression of SDUG was carried out in the pET [cloned into pET45b(+)] expression system initially and co-expression of SDUG using chaperone plasmids pG-KJE8, pGro 7, pKJE7, pG-Tf2 and pTf16 containing chaperone proteins of dnaK-dnaJ-grpE-groES-gro-E, groES-groEL, dnaK-dnaJ-grpE, groES-groEL-tig, and tig respectively, was carried out subsequently. RESULTS: Expression of SDUG was seen when Escherichia coli strain BL21(DE3) is used, while concentrating protein largely into the insoluble fraction. The co-expression of SDUG using chaperone plasmid mediated system indicated a significant increase of the protein in the soluble fraction. Of the chaperon plasmid sets, the highest amount of recombinant SDUP in the soluble fraction was seen when pGro7 was used in the presence of 2 mg/mL L-arabinose and 0.6M IPTG concentration in the culture medium and for 3 h of incubation at the temperature of 28 °C. Recombinant SDUG was purified both from soluble and insoluble fractions using Ni affinity chromatography. SDS-PAGE and western blot analyses of these proteins revealed a single band having expected size of ∼24 kDa. CONCLUSIONS: SDUG seems to be more aggregate-prone and hydrophobic in nature and such protein can make soluble by correct selecting the inducer concentrations and induction temperature and its duration.