IRSPAS 2016
Permanent URI for this collectionhttp://repository.kln.ac.lk/handle/123456789/15651
Browse
5 results
Search Results
Item Effect of temperature on photosensitivity of electrodeposited n-Cu2O/p-CuxS thin film junctions(Faculty of Science, University of Kelaniya, Sri Lanka, 2016) Madusanka, H.D.P.; Kalubowila, K.D.R.N.; Jayathilaka, K.M.D.C.; Jayanetti, J.K.D.S.The purpose of this study was the construction of a standalone microcontroller based ambient light sensing device to interface an ambient light sensor with a temperature correction and to study the effects of temperature on photosensitivity of electrodeposited Cu2O based thin film p-n junction diodes. Environmentally friendly, low cost, nontoxic cuprous oxides have highly acceptable electrical and optical properties. It has a direct energy gap of about 2 eV at room temperature and has a good absorption coefficient. Cuprous oxide has a good mobility for the majority carriers and a diffusion length of the minority carriers is several micrometers. In this study, an electrolytic solution of 0.1M sodium acetate and 0.01M cupric acetate was used to fabricate Cu2O thin films on top of Ti substrates using electrodeposition. Electrodeposition was carried out potentiostatically at a potential of -200 mV with respect to the saturated calomel electrode. A Na2S solution was used to make the n- Cu2O/p-CuxS junction. In order to increase the photocurrent from the fabricated n- Cu2O/p-CuxS junction, the sulphided Cu2O sample was exposed to ammonium sulphide gas. Then the photocurrent of the n-Cu2O/p-CuxS thin film junction was measured by a constructed microcontroller based light sensing device simultaneously monitoring the intensity of light with a luminance meter HS1010. An important observation made in this study was that the photocurrent of the electrodeposited Cu2O/CuxS thin film junctions depended greatly on the variation of temperature during exposure to light. Thus the junction photocurrent was studied by exposing the junctions to light while monitoring the variation in the photocurrent with the temperature using a DS18B20 temperature sensor. The resulting data were plotted using MATLAB software and it was found that the photocurrent of the thin film p-n junction displayed a variation that was very much linear at low intensities of light. The measured output currents obtained from the p-n junctions and the output values obtained from the temperature sensor were used to display the intensity of light with the temperature correction using an electronic circuit.Item Electrodeposition of CdTe thin films using a two electrode system(Faculty of Science, University of Kelaniya, Sri Lanka, 2016) Wedisinghe, K.C.; Atapattu, H.Y.R.; de Silva, D.S.M.Cadmium telluride (CdTe) is a promising material for thin film solar cell applications due to its ideal band gap of ~1.5 eV which has the ability to absorb the maximum of the solar spectrum and higher conversion efficiency of sun light. Among the various deposition techniques available to produce CdTe semiconductor material in commercial quantities, electrodeposition has drawn more attention due to its simplicity, scalability and easy control of the material properties through growth parameters; applied potential, temperature, pH and the composition of the bath etc. Since the reference electrode could be a potential impurity source in the conventional three electrode electrolytic system, this study was mainly focused on the use of two electrode electrolytic system to determine suitable deposition potential and pH ranges for growth of CdTe thin film while avoiding the influence of impurities. The two electrode electrolytic cell consisted of, fluorine doped tin oxide coated glass substrate as the working electrode and 99.99% pure carbon electrode as counter electrode was used for the deposition of CdTe thin films. The electrolyte contained analytical grade reagents of 1.25 mol/L CdSO4 and 1.0 mmol/L TeO2 as cadmium and tellurium precursors respectively. Prior to electrodepositions, pH of the electrolytic baths were varied from 2.0 to 2.4 at 25 °C. While changing the cathodic deposition potentials in the range of (1.30 - 1.37) V, the CdTe depositions were carried out stirring the bath at 60 rpm and at the temperature of 65 °C. Following the heat treatment of the samples for 10 minutes at 400 °C in air, the characterization of CdTe thin films was carried out based on optical absorption, photo-electrochemical cell, X-ray diffraction and scanning electron microscopic studies. The results of the study indicate that, CdTe thin films can be successfully grown in the cathodic potential range of (1.34 -1.35) V and at a pH of 2.2 using two electrode electrolytic system.Item Improvement of p-Cu2O/Au interface by controlling the pH of the electrodeposition bath of Cu2O(Faculty of Science, University of Kelaniya, Sri Lanka, 2016) Kafi, F.S.B.; Jayathilekea, K.M.D.C.; Wijesundera, R.P.; Siripala, W.Metal-Semiconductor junction studies play a very important role in discovering new junction properties leading to improved electronic devices. Indeed, Schottky junction is among the fundamental structures used in modern optoelectronics and microwave devices. In this regard, low cost and eco-friendly metal-semiconductor devices with inexpensive materials and fabrication techniques are extremely important. Among other materials, p-Cu2O thin films grown by electrodeposition method have attracted as potential candidates for developing Cu2O based low cost Schottky junction devices. In this study, dependence of the p-Cu2O/Au junction properties on the pH of the Cu2O film deposition bath has been investigated for the development of low cost devices. p-Cu2O thin films were potentiostatically electrodeposited in a three electrode electrochemical cell containing 3M lactic acid, 0.4M CuSO4 and NaOH at different pH values. p-Cu2O/Au Schottky junctions were fabricated by sputtering Au on masked Cu2O samples. Dark Capacitance – Voltage measurements (Mott- Schottky plots) of the fabricated devices revealed that a positive shift of 620 mV of the flat band potential against Au for the change in pH of the film deposition bath from 7.0 to 13.0. This positive shift is significant when compared to the positive shift of 350 mV at the p-Cu2O/electrolyte interface observed earlier. The interaction of surface atoms with the electrolyte species at the Cu2O/electrolyte interface and the presence of bare surface atoms at the Cu2O/Au interface might have led to this improvement. The positive shift of the flat band potential manifests that the positive shift in the valence band edge of p-Cu2O relative to the Fermi level of Au increases the barrier height at the p-Cu2O/Au interface. Thus, the study reveals that the barrier height at the p-Cu2O/Au interface can be controlled with the pH of the film deposition both. As observed, dark Current-Voltage measurements on p-Cu2O/Au devices resulted nearly ohmic behavior for low pH values and non ohmic diode behavior for high pH values. This suggests that for high pH values of the film deposition bath of p-Cu2O improved Schottky junctions can be in fabricated with Au, suitable for various device applications such as rectifying circuits, photovoltaics, etc.Item Growth of CuZnS thin films by sequential electrodeposition and sulphurisation(Faculty of Science, University of Kelaniya, Sri Lanka, 2016) Fernando, W.T.R.S.; Jayathilekea, K.M.D.C.; Wijesundera, R.P.; Siripala, W.Copper Zinc Sulphide (CuZnS) is a promising new absorber material for solar cell applications. Indeed, this material is very attractive for low cost device applications due to abundance and low cost of the staring materials. Very recently, a CuZnS based solar cell with In2S3 window material has been reported having Voc of 0.41 V, Jsc of 10.6 mA/cm2, FF of 45% and of 1.94%. This initial finding has proven the possibility of developing this material as a solar energy material. Among the CuZnS preparation techniques, electrodeposition is an attractive technique because of its simplicity, low cost and possibility of making large area thin films. In this study, possibility of growth of CuZnS thin films by sulphurisation of electrodeposited Cu and Zn stack layers using S powder has been investigated. Cu thin film was electrodeposited on Ti substrate at –700 mV Vs Ag/AgCl for 15 min in an electrochemical cell containing 0.05 M sodium acetate and 0.005 M cupric acetate. Deposition of Zn thin film on Ti/Cu electrodes was carried out at -1.2 V Vs Ag/AgCl for 1 min in an electrochemical cell containing 0.2 M ZnSO4. Deposition parameters of Cu and Zn have been obtained by voltammograms. Set of identical Ti/Cu/Zn thin film electrodes having Cu/Zn ratio of 3.2 were prepared by maintaining the respective Cu and Zn thin film deposition durations for studying the sulphurisation process. In order to grow CuZnS, Ti/Cu/Zn thin film electrodes were annealed at different temperatures (400 oC, 450 oC, 500 oC, 550 oC and 600 oC) with different S contents (10 mg, 20 mg, 30 mg, 40 mg and 50 mg) for a duration of 60 min. CuZnS thin films were characterized using dark and light current voltage measurements in a PEC containing 0.1 M sodium acetate to obtain the best sulphurisation condition. Dark and light I-V characteristics revealed that the films annealed at 600 oC with the S content between 10 to 20 mg exhibits photoactivity. Further, photocurrent was always cathodic confirming the formation of p-CuZnS thin films. It was revealed in this preliminary investigation that the best photoactive films could be produced when films are annealed at 600 oC for 60 min in 20 mg S content. We have found, that photoactive p-CuZnS thin films can be grown by employing the technique of annealing electrodeposited Cu and Zn stack layers using S powder. Cu/Zn ratio of the stack layers could be the crucial parameter in determining the structure, conductivity type and resistivity of CuZnS films and therefore the methodology developed in this study could be further investigated, in order to develop the material for wider applications.Item Electrodeposition of well-adhered CdTe thin films for solar cell applications(Faculty of Science, University of Kelaniya, Sri Lanka, 2016) Atapattu, H.Y.R.; de Silva, D.S.M.; Pathiratne, K.A.S.Among the second generation thin film photovoltaics, CdS/CdTe based solar cell device is one of the leading contenders for large scale commercialization. Since the CdTe is the crucial absorber material of the foregoing device, it is essential to maintain a well-adhered CdTe layer to obtain high photovoltaic activities. If not, loosened CdTe layers with numerous pinholes can reduce the electrical, optical, structural and morphological properties of the material and hence extinguish the entire activities of CdS/CdTe solar cells. In the present study, an electrodeposition procedure was developed to fabricate welladherent CdTe layers to the substrate using the typical three electrode electrolytic cell. A fluorine doped tin oxide conducting glass substrate (7Ω/sq.) with dimensions of (1×3) cm2 was used as the working electrode in the cell. A saturated calomel electrode and a high purity graphite rod served as reference and counter electrodes respectively. All the electrodepositions were carried out using an aqueous solution containing 1.0 mol/L CdSO4, 1.0 mmol/L TeO2 and 5.5 mmol/L CdCl2. Based on the cyclic voltammetry studies and the stoichiometry of the proposed chemical reaction which forms CdTe material, the possible cathodic deposition potential (CDP) and pH ranges were identified to be in the ranges of 550-710 mV and 1.4-2.4 respectively. Henceforth, CdTe layers were electrodeposited at above mentioned conditions at temperature of 65 °C and subsequently annealed in air at 400 °C for 10 min. Thereafter, by considering the physical appearance of deposited CdTe layers and their adhesiveness upon a high pressure N2 flow, the feasible values for CDP and pH were found to be in the ranges of 590-660 mV and 2.0-2.4 respectively. To further fine-tune the values for CDP and pH, a series of CdTe layers were deposited at above feasible growth conditions and inspected for their electrical, optical, structural and morphological properties using the methods of photo-electrochemical cell, optical absorption spectroscopy, X-ray diffraction and scanning electron microscopy respectively. Results revealed that, the optimum CDP is in the range of 620-660 mV and pH is in the range of 2.1-2.3 to exhibit good photovoltaic qualities.