Chemistry

Permanent URI for this collectionhttp://repository.kln.ac.lk/handle/123456789/3748

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Antioxidant, a-Amylase Inhibitory Activities and Photoprotective Properties of Peels of Nephelium Lappaceum Linn. (Malwana Special)
    (Oriental Journal of Chemistry, 2021) Binuwangi, A.K.D.M.; Perera, M.P.J.; Silva, A.A.G.; Attanayake, R.N.; Rajapakse, C.S.K.
    This study focused on evaluation of antioxidant, α-amylase inhibitory activities and photo protective properties of peels of Nephelium lappaceum Linn. (rambutan); Malwana special. Methanolic extract of peels was sequentially partitioned in hexane, dichloromethane (DCM) and aqueous methanol. The methanol extract showed a significantly (p greater then 0.05) higher DPPH radical scavenging activity than that of butylated hydroxytoluene. Among the fractions, the highest total phenolic content (TPC) was found in the aqueous methanol fraction. DCM and aqueous methanol fractions were rich in flavonoids. In vitro α-amylase inhibitory activity of the aqueous methanol fraction was also significantly higher than the standard drug, acarbose. Partially purified aqueous methanol fraction of rambutan peels exhibited UV-B absorption with a moderate solar protection factor. The results revealed that the peels of Nephelium lappaceum Linn., Malwana special can be considered as a promising source for the development of natural antioxidant, cosmeceutical sunscreen and antidiabetic agents.
  • Thumbnail Image
    Item
    Decaying Hardwood Associated Fungi Showing Signatures of Polyethylene Degradation
    (BioResources, 2021) Perera, P.; Deraniyagala, A.S.; Mahawaththagea, M.P.S.; Herath, H.; Rajapakse, C.S.K.; Wijesinghe, P.; Attanayake, R.N.
    The involvement of wood decay fungi and the importance of their enzymes in polyethylene degradation is well documented. Therefore, decay-resistant hardwood associated fungi should be better degraders with their versatile enzymatic systems. In the current study, decaying hardwood associated fungi were isolated and their ability to degrade low-density polyethylene (LDPE) was assessed. Thirty-three isolates were identified by sequencing the internal transcribed spacer region of nuclear ribosomal DNA. Randomly selected isolates were tested for laccase producing abilities. Three species were selected to test their potentials in LDPE sheet degradation. Fungi were incubated in Czapek-Dox broth containing 20-micron LDPE sheets at room temperature for 60 days. The biodegradation signatures were assessed by analyzing the changes in structural characteristics of LDPE using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), percent reduction of tensile properties, and weight loss. FTIR analysis revealed changes in certain functional groups compared with the control, indicating chemical changes resulting from the treatment. LDPE sheets incubated with fungi showed cracks and holes under SEM analysis, percent reduction in tensile properties, and weight loss, which are the signatures of degradation. This study revealed that the hardwood decaying basidiomycetes, Phlebiopsis flavidoalba, Schizophyllum commune, and Phanerodontia chrysosporium have the potential for in vitro LDPE degradation.
  • Thumbnail Image
    Item
    Removal of Fluoride from Drinking Water Using Protonated Glycerol Diglycidyl Ether Cross-Linked Chitosan Beads
    (Chem. Chem. Technol., 2021) Pathirannehe, P.; Rajapakse, C.S.K.; Fernando, T.D.
    In this study, physically and chemically modified chitosan; protonated glycerol diglycidyl ether cross-linked chitosan beads (GDCLCB/H+) were prepared and characterized using FTIR and SEM. The optimum defluoridation capacity (DC) of GDCLCB/H+ was observed at the initial F- ion concentration of 15 mg/l, adsorbent dosage of 0.6 g, contact time of 30 min and pH of the solution was in the range of 5–7 at 303 ± 2 K. The equilibrium adsorption data fitted well with Langmuir and Freundlich isotherm models. The maximum adsorption capacity (q0), obtained from Langmuir isotherm for F-adsorption was found to be 2000 mg/kg, which was significantly higher than that of unmodified chitosan (192.3 mg/kg) and most of the chitosan-based sorbents reported in the literature. Water samples collected from Medawachchiya, Sri Lanka, were treated with the adsorbents and the results suggested that GDCLCB/H+ could be used as an effective defluoridation agent.