Smart Computing and Systems Engineering - 2025 (SCSE 2025)

Permanent URI for this collectionhttp://repository.kln.ac.lk/handle/123456789/30037

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Deep Learning-Based Approach for Distinguishing Between AI-Generated and Human-Drawn Paintings
    (Department of Industrial Management, Faculty of Science, University of Kelaniya., 2025) Warnakulasooriya, A. I.; Rupasingha, R. A. H. M.; Kumara, B. T. G. S.
    With the increasing number of robust Artificial Intelligence (AI) art generation applications, more realistic AI-generated paintings (AIGPs) are emerging, creating a significant impact on artists. Due to the widespread acceptance of AIGPs, the cultural, historical, and monetary value of real masterpieces is becoming uncertain, raising concerns about the significance of human painters and their artistic techniques. To protect artists’ rights, it is crucial to differentiate AIGPs from human-drawn paintings (HDPs). Accordingly, the main objective of this research is to develop a Convolutional Neural Network (CNN) model that can automatically distinguish between AI-generated and human-drawn paintings without human intervention. Unlike previous studies that focused mainly on pixel-level analysis, the proposed model considers additional features such as edge patterns, object arrangements, pattern distributions, and gradient characteristics in painting classification. A diverse dataset of 3,000 paintings from the AI-ArtBench Dataset—comprising 1,500 AIGPs and 1,500 HDPs across 10 different art themes—was collected and preprocessed for this study. The AIGPs were generated in equal proportions using Latent Diffusion and Standard Diffusion Models. The implemented CNN model achieved an optimum classification accuracy of 90% with a training data size of 10%, while the ANN model exhibited 77% accuracy under the same conditions. Furthermore, models were compared using performance metrics such as precision, recall, F1-score, RMSE, and MAE. Through Gradient-weighted Class Activation Mapping (Grad-CAM), the key visual features that the CNN model used to distinguish AIGPs from HDPs were identified. These findings highlight the potential of automated systems in detecting AI-generated versus human-created artworks for authentication purposes. Future work will focus on analyzing model performance across different art styles and identifying the unique discriminative features associated with each.
  • Item
    AI-Driven Approach for Measuring and Classifying Diabetic Retinopathy Severity
    (Department of Industrial Management, Faculty of Science, University of Kelaniya., 2025) Shaik, A.; Little Flower, K.; Veerabhadraiah, S.; Nandini, A.; Sai Kiran, C.; Yashwanth Goud, K.
    Diabetic Retinopathy is one of the most common complications affecting people with diabetes and is a leading cause of blindness worldwide. Advanced technological methods through image analysis and artificial neural networks have become major assets in addressing the escalating problem of DR. This paper discusses various approaches to implementing automation in DR detection, focusing on image acquisition and preprocessing, feature extraction, and classification using AI. We review the utility of these systems in terms of cost, benefits, and performance, as well as the challenges related to data quality, model interpretability, and regulatory requirements. The study demonstrates that automation holds the key to delivering higher patient-impact opportunities in clinical applications such as screening programs and telemedicine. Finally, we discuss directions for future research and community implementation, emphasizing the importance of highly controlled, naturalistic designs and the translation of research findings into clinical practice.