Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Panamaldeniya, Shasika A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Nb2O5 Microcolumns for Ethanol Sensing
    (2024) Kumarage, Gayan W. C.; Panamaldeniya, Shasika A.; Maraloiu, Valentin A.; Dassanayake, Buddhika S.; Gunawardhana, Nanda; Comini, Elisabetta
    Pseudohexagonal Nb2O5 microcolumns spanning a size range of 50 to 610 nm were synthesized utilizing a cost-effective hydrothermal process (maintained at 180 ◦C for 30 min), followed by a subsequent calcination step at 500 ◦C for 3 h. Raman spectroscopy analysis unveiled three distinct reflection peaks at 220.04 cm−1, 602.01 cm−1, and 735.3 cm−1, indicative of the pseudohexagonal crystal lattice of Nb2O5. The HRTEM characterization confirmed the inter-lattice distance of 1.8 Å for the 110 plain and 3.17 Å for the 100 plain. The conductometry sensors were fabricated by drop-casting a dispersion of Nb2O5 microcolumns, in ethanol, on Pt electrodes. The fabricated sensors exhibited excellent selectivity in detecting C2H5OH (ΔG/G = 2.51 for 10 ppm C2H5OH) when compared to a variety of tested gases, including CO, CO2, NO2, H2, H2S, and C3H6O. The optimal operating temperature for this selective detection was determined to be 500 ◦C in a dry air environment. Moreover, the sensors demonstrated exceptional repeatability over the course of three testing cycles and displayed strong humidity resistance, even when exposed to 90% relative humidity. This excellent humidity resistance gas sensing property can be attributed to their nanoporous nature and elevated operating temperature.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify