Browsing by Author "Lehne, B."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study(The Lancet, Diabetes & Endocrinology, 2015) Chambers, J.C.; Loh, M.; Lehne, B.; Drong, A.; Kriebel, J.; Motta, V.; Wahl, S.; Elliott., H.R; Rota, F.; Scott, W.R.; Zhang, W.; Tan, S.T.; Campanella, G.; Chadeau-Hyam, M.; Yengo, L.; Richmond, R.C.; Adamowicz-Brice, M.; Afzal, U.; Bozaoglu, K.; Mok, Z.Y.; Ng, H.K.; Pattou, F.; Prokisch, H.; Rozario, M.A.; Tarantini, L.; Abbott, J.; Ala-Korpela, M.; Albetti, B.; Ammerpohl, O.; Bertazzi, P.A.; Blancher, C.; Caiazzo, R.; Danesh, J.; Gaunt, T.R.; de Lusignan, S.; Gieger, C.; Illig, T.; Jha, S.; Jones, S.; Jowett, J.; Kangas, A.J.; Kasturiratne, A.; Kato, N.; Kotea, N.; Kowlessur, S.; Pitkäniemi, J.; Punjabi, P.; Saleheen, D.; Schafmayer, C.; Soininen, P.; Tai, E.S.; Thorand, B.; Tuomilehto, J.; Wickremasinghe, A.R.; Kyrtopoulos, S.A.; Aitman, T.J.; Herder, C.; Hampe, J.; Cauchi, S.; Relton, C.L.; Froguel, P.; Soong, R.; Vineis, P.; Jarvelin, M.R.; Scott, J.; Grallert, H.; Bollati, V.; Elliott, P.; McCarthy, M.I.; Kooner, J.S. JBACKGROUND: Indian Asians, who make up a quarter of the world's population, are at high risk of developing type 2 diabetes. We investigated whether DNA methylation is associated with future type 2 diabetes incidence in Indian Asians and whether differences in methylation patterns between Indian Asians and Europeans are associated with, and could be used to predict, differences in the magnitude of risk of developing type 2 diabetes. METHODS: We did a nested case-control study of DNA methylation in Indian Asians and Europeans with incident type 2 diabetes who were identified from the 8-year follow-up of 25 372 participants in the London Life Sciences Prospective Population (LOLIPOP) study. Patients were recruited between May 1, 2002, and Sept 12, 2008. We did epigenome-wide association analysis using samples from Indian Asians with incident type 2 diabetes and age-matched and sex-matched Indian Asian controls, followed by replication testing of top-ranking signals in Europeans. For both discovery and replication, DNA methylation was measured in the baseline blood sample, which was collected before the onset of type 2 diabetes. Epigenome-wide significance was set at p<1 × 10(-7). We compared methylation levels between Indian Asian and European controls without type 2 diabetes at baseline to estimate the potential contribution of DNA methylation to increased risk of future type 2 diabetes incidence among Indian Asians. FINDINGS: 1608 (11•9%) of 13 535 Indian Asians and 306 (4•3%) of 7066 Europeans developed type 2 diabetes over a mean of 8•5 years (SD 1•8) of follow-up. The age-adjusted and sex-adjusted incidence of type 2 diabetes was 3•1 times (95% CI 2•8-3•6; p<0•0001) higher among Indian Asians than among Europeans, and remained 2•5 times (2•1-2•9; p<0•0001) higher after adjustment for adiposity, physical activity, family history of type 2 diabetes, and baseline glycemic measures. The mean absolute difference in methylation level between type 2 diabetes cases and controls ranged from 0•5% (SD 0•1) to 1•1% (0•2). Methylation markers at five loci were associated with future type 2 diabetes incidence; the relative risk per 1% increase in methylation was 1•09 (95% CI 1•07-1•11; p=1•3 × 10(-17)) for ABCG1, 0•94 (0•92-0•95; p=4•2 × 10(-11)) for PHOSPHO1, 0•94 (0•92-0•96; p=1•4 × 10(-9)) for SOCS3, 1•07 (1•04-1•09; p=2•1 × 10(-10)) for SREBF1, and 0•92 (0•90-0•94; p=1•2 × 10(-17)) for TXNIP. A methylation score combining results for the five loci was associated with future type 2 diabetes incidence (relative risk quartile 4 vs quartile 1 3•51, 95% CI 2•79-4•42; p=1•3 × 10(-26)), and was independent of established risk factors. Methylation score was higher among Indian Asians than Europeans (p=1 × 10(-34)). INTERPRETATION: DNA methylation might provide new insights into the pathways underlying type 2 diabetes and offer new opportunities for risk stratification and prevention of type 2 diabetes among Indian Asians. FUNDING: The European Union, the UK National Institute for Health Research, the Welcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health. Copyright © 2015 Elsevier Ltd. All rights reserved.Item Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity(Nature Publishing Group, 2017) Whal, S.; Drong, A.; Lehne, B.; Loh, M.; Scott, W.R.; Kunze, S.; Tsai, P.C.; Ried, J.S.; Zhang, W.; Yang, Y.; Tan, S.; Fiorito, G.; Franke, L.; Guarrera, S.; Kasela, S.; Kriebel, J.; Richmond, R.C.; Adamo, M.; Afzal, U.; Ala-Korpela, M.; Albeetti, B.; Ammerpohl, O.; Apperley, J.F.; Beekman, M.; Bertazzi, P.A.; Black, S.L.; Blancher, C.; Bonder, M.J.; Brosch, M.; Carstensen-Kirberg, M.; de Craen, A.J.; de Lusignan, S.; Dehghan, A.; Elkalaawy, M.; Fischer, K.; Franco, O.H.; Gaunt, T.R.; Hampe, J.; Hashemi, M.; Isaacs, A.; Jenkinson, A.; Jha, S.; Kato, N.; Krogh, V.; Laffan, M.; Meisinger, C.; Meitinger, T.; Mok, Z.Y.; Motta, V.; Ng, H.K.; Nikolakopoulou, Z.; Nteliopoulos, G.; Panico, S.; Pervjakova, N.; Prokisch, H.; Rathmann, W.; Roden, M.; Rota, F.; Rozario, M.A.; Sandling, J.K.; Schafmayer, C.; Schramm, K.; Siebert, R.; Slagboom, P.E.; Soininen, P.; Stolk, L.; Strauch, K.; Tai, E.S.; Tarantini, L.; Thorand, B.; Tigchelaar, E.F.; Tumino, R.; Uitterlinden, A.G.; van Duijn, C.; van Meurs, J.B.; Vineis, P.; Wickremasinghe, A.R.; Wijmenga, C.; Yang, T.P.; Yuan, W.; Zhernakova, A.; Batterham, R.L.; Smith, G.D.; Deloukas, P.; Heijmans, B.T.; Herder, C.; Hofman, A.; Lindgren, C.M.; Milani, L.; van der Harst, P.; Peters, A.; Illig, T.; Relton, C.L.; Waldenberger, M.; Järvelin, M.R.; Bollati, V.; Soong, R.; Spector, T.D.; Scott, J.; McCarthy, M.I.; Elliott, P.; Bell, J.T.; Matullo, G.; Gieger, C.; Kooner, J.S.; Grallert, H.; Chambers, J.C.Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.Item A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure(University of Chicago Press, 2018) Sung, Y.J.; Winkler, T.W.; de Las Fuentes, L.; Bentley, A.R.; Brown, M.R.; Kraja, A.T.; Schwander, K.; Ntalla, I.; Guo, X.; Franceschini, N.; Lu, Y.; Cheng, C.Y.; Sim, X.; Vojinovic, D.; Marten, J.; Musani, S.K.; Li, C.; Feitosa, M.F.; Kilpelainen, T.O.; Richard, M.A.; Noordam, R.; Aslibekyan, S.; Aschard, H.; Bartz, T.M.; Dorajoo, R.; Liu, Y.; Manning, A.K.; Rankinen, T.; Smith, A.V.; Tajuddin, S.M.; Tayo, B.O.; Warren, H.R.; Zhao, W.; Zhou, Y.; Matoba, N.; Sofer, T.; Alver, M.; Amini, M.; Boissel, M.; Chai, J.F.; Chen, X.; Divers, J.; Gandin, I.; Gao, C.; Giulianini, F.; Goel, A.; Harris, S.E.; Hatwig, F.P.; Horimoto, A.R.V.R.; Hsu, F.C.; Jackson, A.U.; Kahonen, M.; Kasturiratne, A.; Kuhnel, B.; Leander, K.; Lee, W.J.; Lin, K.H.; an Luan, J.; McKenzie, C.A.; Meian, H.; Nelson, C.P.; Rauramaa, R.; Schupf, N.; Scott, R.A.; Sheu, W.H.H.; Stancakova, A.; Takeuchi, F.; van der Most, P.J.; Varga, T.V.; Wang, H.; Wang, Y.; Ware, E.B.; Weiss, S.; Wen, W.; Yanek, L.R.; Zhang, W.; Zhao, J.H.; Afag, S.; Alfred, T.; Amin, N.; Arking, D.; Aung, T.; Barr, R.G.; Bielak, L.F.; Boerwincle, E.; Bottinger, E.P.; Braund, P.S.; Brody, J.A.; Broeckel, U.; Cabrera, C.P.; Cade, B.; Caizheng, Y.; Campbell, A.; Canouil, M.; Chakravarti, A.; CHARGE Neurology Working Group; Chauhan, G.; Christensen, K.; Cocca, M.; COGENT-Kidney Consortium; Collins, F.S.; Connel, J.M.; de Mutsert, R.; de Silva, H.J.; Debette, S.; Dorr, M.; Duan, Q.; Eaton, C.B.; Ehret, G.; Evangelou, E.; FAul, J.D.; Fisher, V.A.; Forouhi, N.G.; Franco, O.H.; Friedlander, Y.; Gao, H.; GIANT Consortium; Gigante, B.; Graff, M.; Gu, C.C.; Gu, D.; Gupta, P.; Hagenaars, S.P.; Harris, T.B.; He, J.; Heikkinen, S.; Heng, C.K.; Hirata, M.; Hofman., A.; Howard, B.V.; Hunt, S.; Irvin, M.R.; Jia, Y.; Joehanes, R.; Justice, A.E.; Katsuya, T.; Kaufman, J,; Kerrison, N.D.; Khor, C.C.; Koh, W.P.; Koistinen, H.A.; Komulainen, P.; Kooperberg, C.; Krieger, J.E.; Kubo, M.; Kuusisto, J.; Lanefeld, C.D.; Langenberg, C.; Launer, L.J.; Lehne, B.; Lewis, C.E.; Li, Y.; Lifelines Cohort Study; Lim, S.H.; Lin, S.; Liu, C.T.; Liu, J.; Liu, J.; Liu, K.; Liu, Y.; Loh, M.; Lohmann, K.K.; Long, J.; Louie, T.; Magi, R.; Mahajan, A.; Meitinger, T.; Metspalu, A.; Milani, L.; Momozawa, Y.; Morris, A.P.; Mosley, T.H.Jr.; Munson, P.; Murray, A.D.; Nalls, M.A.; Nasri, U.; Norris, J.M.; North, K.; Ogunniyi, A.; Padmanabhan, S.; Palmas, W.R.; Palmer, N.D.; Pankow, J.S.; Pedersen, N.L.; Peters, A.; Peyser, P.A.; Polasek, O.; Raitakari, O.T.; Renstrom, F.; Rice, T.K.; Ridker, P.M.; Robino, A.; Robinson, J.G.; Rose, L.M.; Rudan, I.; Salako, B.L.; Sandow, K.; Schmidt, C.O.; Schreiner, P.J.; Scott, W.R.; Seshadri, S.; Sever, P.; Sitlani, C.M.; Smith, J.A.; Snieder, H.; Starr, J.M.; Strauch, K.; Tang, H.; Taylor, K.D.; Teo, Y.Y.; Tham, Y.C.; Uitterlineden, A.G.; Waldenberger, M.; Wang, L.; Wang, Y.X.; Wei, W.B.; Williams, C.; Wilson, G.; Wojczynski, M.K.; Yao, J.; Yuan, J.M.; Zonderman, A.B.; Becker, D.M.; Boehnke, M.; Bowden, D.W.; Chambers, J.C.; Chen, Y.I.; de Faire, U.; Deary, I.J.; Esco, T.; Farrall, M.; Forrester, T.; Franks, P.W.; Freedman, B.I.; Froguel, P.; Gasparini, P.; Gieger, C.; Horta, B.L.; Hung, Y.J.; Jonas, J.B.; Kato, N.; Kooner, J.S.; Laakso, M.; Lehtimaki, T.; Liang, K.W.; Magnusson, P.K.E.; Newman, A.B.; Oldehinkel, A.J.; Pereira, A.C.; Redline, S.; Rettig, R.; Samani, N.J.; Scott, J.; Shu, X.O.; van der Harst, P.; Wagenknecht, L.E.; Wareham, N.J.; Watkins, H.; Weir, D.R.; Wickremasinghe, A.R.; Wu, T.; Zheng, W.; Kamatani, Y.; Laurie, C.C.; Bouchard, C.; Cooper, R.S.; Evans, M.K.; Gudnason, V.; Kardia, S.L.R.; Kritchevsky, S.B.; Levy, D.; O'Connell, J.R.; Psaty, B.M.; van Dam, R.M.; Sims, M.; Arnett, D.K.; Mook-Kanamori, D.O.; Kelly, T.N.; Fox, E.R.; Hayward, C.; Fornage, M.; Rotimi, C.N.; Province, M.A.; van Dujin, C.M.; Tai, E.S.; Wong, T.Y.; Loos, R.J.F.; Reiner, A.P.; Rotter, J.I.; Zhu, X.; Bierut, L.J.; Gauderman, W.J.; Caulfield, M.J.; Elliott, P.; Rice, K.; Munroe, P.B.; Morrison, A.C.; Cupples, L.A.; Rao., D.C.; Chasman, D.I.Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10-8) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10-8). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).Item Multi-ancestry genome-wide association study of lipid levels incorporating gene-alcohol interactions.(School of Hygiene and Public Health of Johns Hopkins University,Baltimore., 2019) de Vries, P. S.; Brown, M. R.; Bentley, A. R.; Sung, Y. J.; Winkler, T. W.; Ntalla, I.; Schwander, K.; Kraja, A. T.; Guo, X.; Franceschini, N.; Cheng, C. Y.; Sim, X.; Vojinovic, D.; Huffman, J. E.; Musani, S. K.; Li, C.; Feitosa, M.F.; Richard, M.A.; Noordam, R.; Aschard, H.; Bartz, T. M.; Bielak, L. F.; Deng, X.; Dorajoo, R.; Lohman, K.K.; Manning, A. K.; Rankinen, T.; Smith, A. V.; Tajuddin, S. M.; Evangelou, E.; Graff, M.; Alver, M.; Boissel, M.; Chai, J. F.; Chen, X.; Divers, J.; Gandin, I.; Gao, C.; Goel, A.; Hagemeijer, Y.; Harris, S. E.; Hartwig, F. P.; He, M.; Horimoto, A. R. V. R.; Hsu, F. C.; Jackson, A. U.; Kasturiratne, A.; Komulainen, P.; Kühnel, B.; Laguzzi, F.; Lee, J. H.; Luan, J.; Lyytikäinen, L. P.; Matoba, N.; Nolte, I. M.; Pietzner, M.; Riaz, M.; Said, M. A.; Scott, R. A.; Sofer, T.; Stancáková, A.; Takeuchi, F.; Tayo, B. O.; van der Most, P. J.; Varga, T. V.; Wang, Y.; Ware, E. B.; Wen, W.; Yanek, L. R.; Zhang, W.; Zhao, J. H.; Afaq, S.; Amin, N.; Amini, M.; Arking, D. E.; Aung, T.; Ballantyne, C.; Boerwinkle, E.; Broeckel, U.; Campbell, A.; Canouil, M.; Charumathi, S.; Chen, Y. I.; Connell, J. M.; de Faire, U.; de Las Fuentes, L.; de Mutsert, R.; de Silva, H.J.; Ding, J.; Dominiczak, A. F.; Duan, Q.; Eaton, C. B.; Eppinga, R.N.; Faul, J. D.; Fisher, V.; Forrester, T.; Franco, O. H.; Friedlander, Y.; Ghanbari, M.; Giulianini, F.; Grabe, H. J.; Grove, M. L.; Gu, C. C.; Harris, T. B.; Heikkinen, S.; Heng, C. K.; Hirata, M.; Hixson, J. E.; Howard, B. V.; Ikram, M. A.; InterAct Consortium; Jr. Jacobs, D. R.; Johnson, C.; Jonas, J. B.; Kammerer, C. M.; Katsuya, T.; Khor, C. C.; Kilpeläinen, T. O.; Koh, W. P.; Koistinen, H. A.; Kolcic, I.; Kooperberg, C.; Krieger, J. E.; Kritchevsky, S. B.; Kubo, M.; Kuusisto, J.; Lakka, T. A.; Langefeld, C. D.; Langenberg, C.; Launer, L. J.; Lehne, B.; Lemaitre, R. N.; Li, Y.; Liang, J.; Liu, J.; Liu, K.; Loh, M.; Louie, T.; Mägi, R.; Manichaikul, A. W.; McKenzie, C. A.; Meitinger, T.; Metspalu, A.; Milaneschi, Y.; Milani, L.; Mohlke, K. L.; Jr. Mosley, T. H.; Nelson, C. P.; Mukamal, K. J.; Nalls, M. A.; Nauck, M.; Sotoodehnia, N.; O'Connell, J. R.; Palmer, N. D.; Pazoki, R.; Pedersen, N. L.; Peters, A.; Peyser, P. A.; Polasek, O.; Poulter, N.; Raffel, L. J.; Raitakari, O. T.; Reiner, A. P.; Rice, T. K.; Rich, S. S.; Robino, A.; Robinson, J. G.; Rose, L. M.; Rudan, I.; Schmidt, C. O.; Schreiner, P. J.; Scott, W. R.; Sever, P.; Shi, Y.; Sidney, S.; Sims, M.; Smith, B. H.; Smith, J. A.; Snieder, H.; Starr, J. M.; Strauch, K.; Tan, N.; Taylor, K. D.; Teo, Y. Y.; Tham, Y. C.; Uitterlinden, A. G.; van Heemst, D.; Vuckovic, D.; Waldenberger, M.; Wang, L.; Wang, Y.; Wang, Z.; Wei, W. B.; Williams, C.; Sr Wilson, G.; Wojczynski, M. K.; Yao, J.; Yu, B.; Yu, C.; Yuan, J. M.; Zhao, W.; Zonderman, A. B.; Becker, D. M.; Boehnke, M.; Bowden, D. W.; Chambers, J. C.; Deary, I. J.; Esko, T.; Farrall, M.; Franks, P. W.; Freedman, B. I.; Froguel, P.; Gasparini, P.; Gieger, C.; Horta, B. L.; Kamatani, Y.; Kato, N.; Kooner, J. S.; Laakso, M.; Leander, K.; Lehtimäki, T.; Lifelines Cohort, Groningen,; The Netherlands (Lifelines Cohort Study); Magnusson, P. K. E.; Penninx, B.; Pereira, A. C.; Rauramaa, R.; Samani, N.J.; Scott, J.; Shu, X. O.; van der Harst, P.; Wagenknecht, L. E.; Wang, Y. X.; Wareham, N. J.; Watkins, H.; Weir, D. R.; Wickremasinghe, A.R.; Zheng, W.; Elliott, P.; North, K. E.; Bouchard, C.; Evans, M. K.; Gudnason, V.; Liu, C. T.; Liu, Y.; Psaty, B. M.; Ridker, P. M.; van Dam, R. M.; Kardia, S. L. R.; Zhu, X.; Rotimi, C. N.; Mook-Kanamori, D. O.; Fornage, M.; Kelly, T. N.; Fox, E. R.; Hayward, C.; van Duijn, C. M.; Tai, E. S.; Wong, T. Y.; Liu, J.; Rotter, J. I.; Gauderman, W. J.; Province, M. A.; Munroe, P. B.; Rice, K.; Chasman, D. I.; Cupples, L. A.; Rao, D. C.; Morrison, A. C.An individual's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multi-ancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in Stage 1 (genome-wide discovery) and 66 studies in Stage 2 (focused follow-up), for a total of 394,584 individuals from five ancestry groups. Genetic main and interaction effects were jointly assessed by a 2 degrees of freedom (DF) test, and a 1 DF test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in Stage 1 and were evaluated in Stage 2, followed by combined analyses of Stage 1 and Stage 2. In the combined analysis of Stage 1 and Stage 2, 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2 DF tests, of which 18 were novel. No genome-wide significant associations were found testing the interaction effect alone. The novel loci included several genes (PCSK5, VEGFB, and A1CF) with a putative role in lipid metabolism based on existing evidence from cellular and experimental models.Item Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.(Nature Publishing Group, 2019) Bentley, A.R.; Chasman, D. I.; Schwander, K.; Ntalla, I.; Kraja, A.T.; Winkler, T.W.; Brown, M. R.; Sung, Y. J.; Lim, E.; Huffman, J.E.; Vojinovic, D.; Sim, X.; Cheng, C.Y.; Lu, Y.; Liu, J.; Guo, X.; Deng, X.; Musani, S.K.; Li, C.; Feitosa, M.F.; Richard, M.A.; Noordam, R.; Baker, J.; Chen, G.; Aschard, H.; Bartz, T.M.; Ding, J.; Dorajoo, R.; Manning, A.K.; Rankinen, T.; Smith, A. V.; Tajuddin, S.M.; Zhao, W.; Graff, M.; Alver, M.; Boissel, M.; Chai, J. F.; Chen, X.; Divers, J.; Evangelou, E.; Gao, C.; Goel, A.; Hagemeijer, Y.; Harris, S. E.; Hartwig, F. P.; He, M.; Horimoto, A.R.V. R.; Hsu, F.C.; Hung, Y. J.; Jackson, A. U.; Kasturiratne, A.; Komulainen, P.; Kühnel, B.; Leander, K.; Lin, K. H.; Luan, J.; Lyytikäinen, L.P.; Matoba, N.; Nolte, I. M.; Pietzner, M.; Prins, B.; Riaz, M.; Robino, A.; Said, M. A.; Schupf, N.; Scott, R. A.; Sofer, T.; Stancáková, A.; Takeuchi, F.; Tayo, B. O.; van der Most, P. J.; Varga, T. V.; Wang, T. D.; Wang, Y.; Ware, E. B.; Wen, W.; Xiang, Y. B.; Yanek, L. R.; Zhang, W.; Zhao, J. H.; Adeyemo, A.; Afaq, S.; Amin, N.; Amini, M.; Arking, D.E.; Arzumanyan, Z.; Aung, T.; Ballantyne, C.; Barr, R. G.; Bielak, L. F.; Boerwinkle, E.; Bottinger, E.P.; Broeckel, U.; Chen, Y. I.; Charumathi, S.; Canouil, M.; Campbell, A.; Cade, B. E.; Brown, M.; Christensen, K.; de Las Fuentes, L.; Connell, J. M.; Concas, M. P.; COGENT-Kidney Consortium; de Silva, H.J.; de Vries, P. S.; Doumatey, A.; Duan, Q.; Eaton, C. B.; Eppinga, R.N.; Faul, J. D.; Floyd, J.S.; Gigante, B.; Gharib, S. A.; Forouhi, N.G.; Ghanbari, M.; Gao, H.; Gandin, I.; Friedlander, Y.; Forrester, T.; Hixson, J. E.; Hirata, M.; Justice, A. E.; Jonas, J. B.; Johnson, C.; Joehanes, R.; Jia, Y.; EPIC-InterAct Consortium; Ikram, M.A.; Katsuya, T.; Khor, C.C.; Kilpeläinen, T.O.; Koh, W. P.; Kolcic, I.; Kooperberg, C.; Krieger, J.E.; Kritchevsky, S.B.; Kubo, M.; Kuusisto, J.; Lakka, T. A.; Langefeld, C.D.; Langenberg, C.; Launer, L. J.; Lehne, B.; Lewis, C. E.; Li, Y.; Liang, J.; Lin, S.; Liu, C.T.; Liu, J.; Liu, K.; Loh, M.; Lohman, K.K.; Louie, T.; Luzzi, A.; Mägi, R.; Mahajan, A.; Manichaikul, A.W.; McKenzie, C.A.; Meitinger, T.; Metspalu, A.; Milaneschi, Y.; Milani, L.; Mohlke, K. L.; Momozawa, Y.; Morris, A. P.; Murray, A. D.; Nalls, M. A.; Nauck, M.; Nelson, C. P.; North, K. E.; O'Connell, J.R.; Palmer, N.D.; Papanicolau, G.J.; Pedersen, N. L.; Peters, A.; Peyser, P. A.; Polasek, O.; Poulter, N.; Raitakari, O.T.; Reiner, A. P.; Renström, F.; Rice, T.K.; Rich, S.S.; Robinson, J.G.; Rose, L. M.; Rosendaal, F. R.; Rudan, I.; Schmidt, C.O.; Schreiner, P. J.; Scott, W.R.; Sever, P.; Shi, Y.; Sidney, S.; Sims, M.; Smith, J. A.; Snieder, H.; Starr, J. M.; Strauch, K.; Stringham, H. M.; Tan, N. Y. Q.; Tang, H.; Taylor, K. D.; Teo, Y. Y.; Tham, Y. C.; Tiemeier, H.; Turner, S. T.; Uitterlinden, A. G.; Understanding Society Scientific Group; van Heemst, D.; Waldenberger, M.; Wang, H.; Wang, L.; Wang, L.; Wei, W. B.; Williams, C. A.; Wilson, G. Sr.; Wojczynski, M. K.; Yao, J.; Young, K.; Yu, C.; Yuan, J. M.; Zhou, J.; Zonderman, A. B.; Becker, D. M.; Boehnke, M.; Bowden, D. W.; Chambers, J. C.; Cooper, R. S.; de Faire, U.; Deary, I. J.; Elliott, P.; Esko, T.; Farrall, M.; Franks, P. W.; Freedman, B. I.; Froguel, P.; Gasparini, P.; Gieger, C.; Horta, B. L.; Juang, J. J.; Kamatani, Y.; Kammerer, C. M.; Kato, N.; Kooner, J. S.; Laakso, M.; Laurie, C. C.; Lee, I. T.; Lehtimäki, T.; Lifelines Cohort; Magnusson, P. K. E.; Oldehinkel, A. J.; Penninx, B. W. J. H.; Pereira, A. C.; Rauramaa, R.; Redline, S.; Samani, N. J.; Scott, J.; Shu, X. O.; van der Harst, P.; Wagenknecht, L. E.; Wang, J. S.; Wang, Y. X.; Wareham, N. J.; Watkins, H.; Weir, D. R.; Wickremasinghe, A.R.; Wu, T.; Zeggini, E.; Zheng, W.; Bouchard, C.; Evans, M. K.; Gudnason, V.; Kardia, S. L. R.; Liu, Y.; Psaty, B. M.; Ridker, P. M.; van Dam, R. M.; Mook-Kanamori, D. O.; Fornage, M.; Province, M. A.; Kelly, T. N.; Fox, E. R.; Hayward, C.; van Duijn, C. M.; Tai, E. S.; Wong, T. Y.; Loos, R. J. F.; Franceschini, N.; Rotter, J. I.; Zhu, X.; Bierut, L. J.; Gauderman, W. J.; Rice, K.; Munroe, P. B.; Morrison, A. C.; Rao, D. C.; Cupples, L. A.; Rotimi, C. N.The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.Item A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure(IRL Press at Oxford University Press., 2019) Sung, Y.J.; de Las Fuentes, L.; Winkler, T.W.; Chasman, D.I.; Bentley, A.R.; Kraja, A.T.; Ntalla, I.; Warren, H.R.; Guo, X.; Schwander, K.; Manning, A.K.; Brown, M.R.; Aschard, H.; Feitosa, M.F.; Franceschini, N.; Lu, Y.; Cheng, C.Y.; Sim, X.; Vojinovic, D.; Marten, J.; Musani, S.K.; Kilpeläinen, T.O.; Richard, M.A.; Aslibekyan, S.; Bartz, T.M.; Dorajoo, R.; Li, C.; Liu, Y.; Rankinen, T.; Smith, A.V.; Tajuddin, S.M.; Tayo, B.O.; Zhao, W.; Zhou, Y.; Matoba, N.; Sofer, T.; Alver, M.; Amini, M.; Boissel, M.; Chai, J.F.; Chen, X.; Divers, J.; Gandin, I.; Gao, C.; Giulianini, F.; Goel, A.; Harris, S.E.; Hartwig, F.P.; He, M.; Horimoto, A.R.V.R.; Hsu, F.C.; Jackson, A.U.; Kammerer, C.M.; Kasturiratne, A.; Komulainen, P.; Kühnel, B.; Leander, K.; Lee, W.J.; Lin, K.H.; Luan, J.; Lyytikäinen, L.P.; McKenzie, C.A.; Nelson, C.P.; Noordam, R.; Scott, R.A.; Sheu, W.H.H.; Stančáková, A.; Takeuchi, F.; van der Most, P.J.; Varga, T.V.; Waken, R.J.; Wang, H.; Wang, Y.; Ware, E.B.; Weiss, S.; Wen, W.; Yanek, L.R.; Zhang, W.; Zhao, J.H.; Afaq, S.; Alfred, T.; Amin, N.; Arking, D.E.; Aung, T.; Barr, R.G.; Bielak, L.F.; Boerwinkle, E.; Bottinger, E.P.; Braund, P.S.; Brody, J.A.; Broeckel, U.; Cade, B.; Campbell, A.; Canouil, M.; Chakravarti, A.; Cocca, M.; Collins, F.S.; Connell, J.M.; de Mutsert, R.; de Silva, H.J.; Dörr, M.; Duan, Q.; Eaton, C.B.; Ehret, G.; Evangelou, E.; Faul, J.D.; Forouhi, N.G.; Franco, O.H.; Friedlander, Y.; Gao, H.; Gigante, B.; Gu, C.C.; Gupta, P.; Hagenaars, S.P.; Harris, T.B.; He, J.; Heikkinen, S.; Heng, C.K.; Hofman, A.; Howard, B.V.; Hunt, S.C.; Irvin, M.R.; Jia, Y.; Katsuya, T.; Kaufman, J.; Kerrison, N.D.; Khor, C.C.; Koh, W.P.; Koistinen, H.A.; Kooperberg, C.B.; Krieger, J.E.; Kubo, M.; Kutalik, Z.; Kuusisto, J.; Lakka, T.A.; Langefeld, C.D.; Langenberg, C.; Launer, L.J.; Lee, J.H.; Lehne, B.; Levy, D.; Lewis, C.E.; Li, Y.; Lifelines Cohort Study; Lim, S.H.; Liu, C.T.; Liu, J.; Liu, J.; Liu, Y.; Loh, M.; Lohman, K.K.; Louie, T.; Mägi, R.; Matsuda, K.; Meitinger, T.; Metspalu, A.; Milani, L.; Momozawa, Y.; Mosley, T.H. Jr; Nalls, M.A.; Nasri, U.; O'Connell, J.R.; Ogunniyi, A.; Palmas, W.R.; Palmer, N.D.; Pankow, J.S.; Pedersen, N.L.; Peters, A.; Peyser, P.A.; Polasek, O.; Porteous, D.; Raitakari, O.T.; Renström, F.; Rice, T.K.; Ridker, P.M.; Robino, A.; Robinson, J.G.; Rose, L.M.; Rudan, I.; Sabanayagam, C.; Salako, B.L.; Sandow, K.; Schmidt, C.O.; Schreiner, P.J.; Scott, W.R.; Sever, P.; Sims, M.; Sitlani, C.M.; Smith, B.H.; Smith, J.A.; Snieder, H.; Starr, J.M.; Strauch, K.; Tang, H.; Taylor, K.D.; Teo, Y.Y.; Tham, Y.C.; Uitterlinden, A.G.; Waldenberger, M.; Wang, L.; Wang, Y.X.; Wei, W.B.; Wilson, G.; Wojczynski, M.K.; Xiang, Y.B.; Yao, J.; Yuan, J.M.; Zonderman, A.B.; Becker, D.M.; Boehnke, M.; Bowden, D.W.; Chambers, J.C.; Chen, Y.I.; Weir, D.R.; de Faire, U.; Deary, I.J.; Esko, T.; Farrall, M.; Forrester, T.; Freedman, B.I.; Froguel, P.; Gasparini, P.; Gieger, C.; Horta, B.L.; Hung, Y.J.; Jonas, J.B.; Kato, N.; Kooner, J.S.; Laakso, M.; Lehtimäki, T.; Liang, K.W.; Magnusson, P.K.E.; VOldehinkel, A.J.; Pereira, A.C.; Perls, T.; Rauramaa, R.; Redline, S.; Rettig, R.; Samani, N.J.; Scott, J.; Shu, X.O.; van der Harst, P.; Wagenknecht, L.E.; Wareham, N.J.; Watkins, H.; Wickremasinghe, A.R.; Wu, T.; Kamatani, Y.; Laurie, C.C.; Bouchard, C.; Cooper, R.S.; Evans, M.K.; Gudnason, V.; Hixson, J.; Kardia, S.L.R.; Kritchevsky, S.B.; Psaty, B.M.; van Dam, R.M.; Arnett, D.K.; Mook-Kanamori, D.O.; Fornage, M.; Fox, E.R.; Hayward, C.; van Duijn, C.M.; Tai, E.S.; Wong, T.Y.; Loos, R.J.F.; Reiner, A.P.; Rotimi, C.N.; Bierut, L.J.; Zhu, X.; Cupples, L.A.; Province, M.A.; Rotter, J.I.; Franks, P.W.; Rice, K.; Elliott, P.; Caulfield, M.J.; Gauderman, W.J.; Munroe, P.B.; Rao, D.C.; Morrison, A.C.ABSTRACT: Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.Item Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries(Public Library of Science, 2018) Feitosa, M.F.; Kraja, A.T.; Chasman, D.I.; Sung, Y.J.; Winkler, T.W.; Ntalla, I.; Guo, X.; Franceschini, N.; Cheng, C.Y.; Sim, X.; Vojinovic, D.; Marten, J.; Musani, S.K.; Li, C.; Bentley, A.R.; Brown, M.R.; Scwander, K.; Richard, M.A.; Noordam, R.; Aschard, H.; Bartz, T.M.; Bielak, L.F.; Dorajoo, R.; Fishaer, V.; Hartwig, F.P.; Horimoto, A.R.V.R.; Lohman, K.K.; Manning, A.K.; Rankinen, T.; Smith, A.V.; Tajiddin, S.M.; Wojczynski, M.K.; Alver, M.; Boissel, M.; Cai, Q.; Campbell, A.; Chai, J.F.; Chen, X.; Divers, J.; Gao, C.; Goel, A.; Hagemeijer, Y.; Harris, S.E.; He, M.; Hsu, F.C.; Jackson, A.U.; Kahonen, M.; Kasturiratne, A.; Komulainen, P.; Kuhnel, B.; Laguzzi, F.; Luan, J.; Matoba, N.; Nolte, I.M.; Padmanabhan, S.; Riaz, M.; Rueedi, R.; Robino, A.; Said, M.A.; Scott, R.A.; Soffer, T.; Stancakova, A.; Takeuchi, F.; Tayo, B.O.; van de Most, P.J.; Varga, T.V.; Vitart, V.; Wang, Y.; Ware, E.B.; Warren, H.R.; Weiss, S.; Wen, W.; Yanek, L.R.; Zhang, W.; Zhao, J.H.; Afaq, S.; Amin, N.; Amini, M.; Arking, D.E.; Aung, T.; Boerwinkle, E.; Borecki, I.; Broecki, I.; Broeckel, U.; Brown, M.; Brumat, M.; Burke, G.L.; Canouil, M.; Chakravarthi, A.; Charumathi, S.; Ida Chen, Y.D.; Connel, J.M.; Correa, A.; de Las Fuentes, L.; de Mutsert, R.; de Silva, H.J.; Deng, X.; Ding, J.; Duan, Q.; Eaton, C.B.; Ehret, G.; Eppinga, R.N.; Evangelou, E.; Faul, J.D.; Felix, S.B.; Forouhi, N.G.; Forrester, T.; Franco, O.H.; Friedlander, Y.; Gandin, I.; Gao, H.; Ghanbari, M.; Gigante, B.; Gu, C.C.; Gu, D.; Hagenaars, S.P.; Halmans, G.; Harris, T.B.; He, J.; Heikkinen, S.; Heng, C.K.; Hirata, M.; Howard, B.V.; Ikram, M.A.; InterAct Consortium; John, U.; Katsuya, T.; Lakka, T.A.; Langefeld, C.D.; Langenberg, C.; Launer, L.J.; Lehne, B.; Lewis, C.E.; Li, Y.; Lin, S.; Lin, U.; Liu, J.; Liu, J.; Loh, M.; Louie, T.; Magi, R.; McKenzie, C.A.; Meitinger, T.; Metspalu, A.; Milaneschi, Y.; Milani, L.; mohlke, K.L.; Momozawa, Y.; Nalls, M.A.; Nelson, C.P.; Sotoodehnia, N.; Norris, J.M.; O'Connel, J.R.; Palmer, N.D.; Perls, T.; Pedersen, N.L.; Peters, A.; Peyser, P.A.; Poulter, N.; Raffel, L.J.; Raitakari, O.T.; Roll, K.; Rose, L.M.; Rosendaal, F.R.; Rotter, J.I.; Schimidit, C.O.; Schreiner, P.J.; Schupf, N.; Scott, W.R.; Sever, P.S.; Shi, Y.; Sidney, S.; Sims, M.; Sitlani, C.M.; Smith, J.A.; Snieder, H.; Starr, J.M.; Strauch, K.; Stringham, H.M.; Tan, N.Y.Q.; Tang, H.; Taylor, K.D.; Teo, Y.Y.; Tham, Y.C.; Turner, S.C.; Uitterlinden, A.G.; Vollenweider, P.; Waldenberger, M.; Wang, L.; Wang, Y.X.; Wei, W.B.; Williams, C.; Yao, J.; Yuan, J.M.; Zhao, W.; Zonderman, A.B.; Becker, D.M.; Boehnke, M.; Bowden, D.W.; Chambers, J.C.; Deary, I.J.; Esco, T.; Farall, M.; Frankd, P.W.; Freedman, B.I.; Froguel, P.; Gasparini, P.; Gieger, C.; Jonas, J.B.; Kamatani, Y.; Kato, N.; Kooner, J.S.; Kutalik, Z.; Laakso, M.; Laurie, C.C.; Leander, K.; Lehtimaki, T.; Study, L.C.; Magnusson, P.K.E.; Olderhinkel, A.J.; Penninx, B.W.J.H.; Polasek, O.; Porteous, D.J.; Rauramaa, R.; Ssamani, N.J.; Scott, J.; Shu, X.O.; van der Harst, P.; Wagenknecht, L.E.; Wareham, N.J.; Watkins, H.; Weir, D.R.; Wickremasinghe, A.R.; Wu, T.; Zheng, W.; Bouchard, C.; Christensen, K.; Evans, M.K.; Gudnason, V.; Horta, B.L.; Kardia, S.L.R.; Liu, Y.; Pereira, A.C.; Psaty, B.M.; Ridker, P.M.; van Dam, R.M.; Gauderman, W.J.; Zhu, X.; Mook-Kanamori, D.O.; Fornage, M.; Rotimi, C.N.; Cupples, L.A.; Kelly, T.N.; Fox, E.R.; Hayward, C.; van Duijn, C.M.; Tai, E.S.; Wong, T.Y.; Kooperberg, C.; Palmas, W.; Rice, K.; Morrison, A.C.; Elliott, P.; Caulfield, M.J.; Munroe, P.B.; Rao, D.C.; Province, M.A.; Levy, D.Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertensionItem Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation(Nature Publishing Company, 2015) Kato, N.; Loh, M.; Takeuchi, F.; Verweij, N.; Wang, X.; Zhang, W.; Kelly, T.N.; Saleheen, D.; Lehne, B.; Leach, I.M.; Drong, A.W.; Abbott, J.; Wahl, S.; Tan, S.T.; Scott, W.R.; Campanella, G.; Chadeau-Hyam, M.; Afzal, U.; Ahluwalia, T.S.; Bonder, M.J.; Chen, P.; Dehghan, A.; Edwards, T.L.; Esko, T.; Go, M.J.; Harris, S.E.; Hartiala, J.; Kasela, S.; Kasturiratne, A.; Khor, C.C.; Kleber, M.E.; Li, H.; Mok, Z.Y.; Nakatochi, M.; Sapari, N.S.; Saxena, R.; Stewart, A.F.; Stolk, L.; Tabara, Y.; Teh, A.L.; Wu, Y.; Wu, J.Y.; Zhang, Y.; Aits, I.; Da Silva Couto Alves, A.; Das, S.; Dorajoo, R.; Hopewell, J.C.; Kim, Y.K.; Koivula, R.W.; Luan, J.; Lyytikäinen, L.P.; Nguyen, Q.N.; Pereira, M.A.; Postmus, I.; Raitakari, O.T.; Bryan, M.S.; Scott, R.A.; Sorice, R.; Tragante, V.; Traglia, M.; White, J.; Yamamoto, K.; Zhang, Y.; Adair, L.S.; Ahmed, A.; Akiyama, K.; Asif, R.; Aung, T.; Barroso, I.; Bjonnes, A.; Braun, T.R.; Cai, H.; Chang, L.C.; Chen, C.H.; Cheng, C.Y.; Chong, Y.S.; Collins, R.; Courtney, R.; Davies, G.; Delgado, G.; Do, L.D.; Doevendans, P.A.; Gansevoort, R.T.; Gao, Y.T.; Grammer, T.B.; Grarup, N.; Grewal, J.; Gu, D.; Wander, G.S.; Hartikainen, A.L.; Hazen, S.L.; He, J.; Heng, C.K.; Hixson, J.E.; Hofman, A.; Hsu, C.; Huang, W.; Husemoen, L.L.; Hwang, J.Y.; Ichihara, S.; Igase, M.; Isono, M.; Justesen, J.M.; Katsuya, T.; Kibriya, M.G.; Kim, Y.J.; Kishimoto, M.; Koh, W.P.; Kohara, K.; Kumari, M.; Kwek, K.; Lee, N.R.; Lee, J.; Liao, J.; Lieb, W.; Liewald, D.C.; Matsubara, T.; Matsushita, Y.; Meitinger, T.; Mihailov, E.; Milani, L.; Mills, R.; Mononen, N.; Müller-Nurasyid, M.; Nabika, T.; Nakashima, E.; Ng, H.K.; Nikus, K.; Nutile, T.; Ohkubo, T.; Ohnaka, K.; Parish, S.; Paternoster, L.; Peng, H.; Peters, A.; Pham, S.T.; Pinidiyapathirage, M.J.; Rahman, M.; Rakugi, H.; Rolandsson, O.; Rozario, M.A.; Ruggiero, D.; Sala, C.F.; Sarju, R.; Shimokawa, K.; Snieder, H.; Sparso, T.; Spiering, W.; Starr, J.M.; Stott, D.J.; Stram, D.O.; Sugiyama, T.; Szymczak, S.; Tang, W.H.; Tong, L.; Trompet, S.; Turjanmaa, V.; Ueshima, H.; Uitterlinden, A.G.; Umemura, S.; Vaarasmaki, M.; van Dam, R.M.; van Gilst, W.H.; van Veldhuisen, D.J.; Viikari, J.S.; Waldenberger, M.; Wang, Y.; Wang, A.; Wilson, R.; Wong, T.Y.; Xiang, Y.B.; Yamaguchi, S.; Ye, X.; Young, R.D.; Young, T.L.; Yuan, J.M.; Zhou, X.; Asselbergs, F.W.; Ciullo, M.; Clarke, R.; Deloukas, P.; Franke, A.; Franks, P.W.; Franks, S.; Friedlander, Y.; Gross, M.D.; Guo, Z.; Hansen, T.; Jarvelin, M.R.; Jorgensen, T.; Jukema, J.W.; Kähönen, M.; Kajio, H.; Kivimaki, M.; Lee, J.Y.; Lehtimäki, T.; Linneberg, A.; Miki, T.; Pedersen, O.; Samani, N.J.; Sorensen, T.I.; Takayanagi, R.; Toniolo, D.; BIOS-consortium; CARDIo GRAMplusCD; LifeLines Cohort Study; InterAct Consortium; Ahsan, H.; Allayee, H.; Chen, Y.T.; Danesh, J.; Deary, I.J.; Franco, O.H.; Franke, L.; Heijman, B.T.; Holbrook, J.D.; Isaacs, A.; Kim, B.J.; Lin, X.; Liu, J.; März, W.; Metspalu, A.; Mohlke, K.L.; Sanghera, D.K.; Shu, X.O.; van Meurs, J.B.; Vithana, E.; Wickremasinghe, A.R.; Wijmenga, C.; Wolffenbuttel, B.H.; Yokota, M.; Zheng, W.; Zhu, D.; Vineis, P.; Kyrtopoulos, S.A.; Kleinjans, J.C.; McCarthy, M.I.; Soong, R.; Gieger, C.; Scott, J.; Teo, Y.Y.; He, J.; Elliott, P.; Tai, E.S.; van der Harst, P.; Kooner, J.S.; Chambers, J.C.We carried out a trans-ancestry genome-wide association and replication study of blood pressurephenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.0 × 10(-21)). The sentinel blood pressure SNPs are enriched for association with DNAmethylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNAmethylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10(-6)). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.