Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lamahewage, L.H.S.N.S."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Is it possible to grow stable p-type CdS layers suitable for fabrication of electronic devices?
    (University of Malaya, Malaysia, 2013) Kiriarachchi, H.D.; Lamahewage, L.H.S.N.S.; Wickramasinghe, W.A.S.; de Silva, D.S.M.; Pathiratne, K.A.S.; Dharmadasa, I.M.
    CdS is a technologically important wide bandgap window material with some unique properties showing highest conversion efficiencies in thin film solar cells based on CdTe and CuInGaSe2 absorber materials. n-CdS/CdTe and n-CdS/CuInGaSe2 hetero-interfaces based solar cells have demonstrated 18.7% and 20.3% lab-scale solar cell efficiencies to date. Both these devices are fabricated based on n-type CdS window material. Recent work on graded bandgap devices using p-type AlGaAs window materials experimentally demonstrated highest Voc values of 1175 mV together with highest possible FF values ~0.85, and therefore if p-CdS can be grown, it provides another route to improve solar cell efficiencies and open doors for many other electronic devices. There are several attempts to grow Cu-doped p-CdS in the literature but the follow-up research work or devices based on p-CdS are scarce. In this research programme of solar energy materials development, using electrochemical growth method, p-type CdS was observed for certain layers. However, the stability of p-type CdS is found to be weak and these results are presented and discussed in this paper.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify