Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kosgahakumbura, K. N. M. L. N"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Isolation of cysteine-rich peptides from the deep-sea marine sponge Stryphnus fortis and determination of its antimicrobial effect
    (Institute of Chemistry Ceylon Adamantane House, Rajagiriya, Sri Lanka., 2020) Kosgahakumbura, K. N. M. L. N; Hettiarachchi, C. M; Jayasinghe, R. P. P. K.; Cárdenas, P.; Gunasekera, S.
    Cysteine-rich peptides are a promising resource for a wide range of pharmacological applications such as development of drug leads and as scaffolds for potential oral drug delivery due to their stable disulfide framework. A handful of these compounds have been isolated from marine sponges and it is speculated that plenty of them remain unexplored. In the present study, four peptides A, B, C and D containing three disulfides were isolated from the aqueous extract of the deep-sea marine sponge Stryphnus fortis (Demospongiae, Tetractinellida, Ancorinidae) from Norway, and were further purified using RP-HPLC (Reverse Phase High Performance Liquid Chromatography). The mass spectroscopic analysis using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization- Time Of Flight) revealed monoisotopic masses of 3331.809 Da [M+H]+, 3349.731 Da [M+H]+, 3517.973 Da [M+H]+, 3917.61 Da [M+H]+respectively for the four peptides A, B, C and D. The antimicrobial activity was screened using a peptide adapted Micro dilution assay against E. coli (ATCC 25922), S. aureus (ATCC 29213) and C. albicans (ATCC 90028) up to a concentration of 50 μM. The average concentration derived from triplicates that exhibited a growth inhibition on visual inspection was considered as the Minimum Inhibitory Concentration (MIC). Moderate antimicrobial activity for peptide C was observed against S. aureus (MIC = 36.14 μM) and C. albicans (MIC = 18.07 μM). However, no inhibition was observed against E. coli up to the highest concentration tested. The human antimicrobial peptide LL 37 was used as the control (MIC value around 1-2 μM). The sequence analysis of the four peptides, their structural characterization and investigation of their potential applications are currently underway.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify