Browsing by Author "Khan, H."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture oftype 2 diabetes susceptibility(Nature Publishing Company, 2014) Mahajan, A.; Go, M.J.; Zhang, W.; Below, J.E.; Gaulton, K.J.; Ferreira, T.; Horikoshi, M.; Johnson, A.D.; Ng, M.C.; Prokopenko, I.; Saleheen, D.; Wang, X.; Zeggini, E.; Abecasis, G.R.; Adair, L.S.; Almgren, P.; Atalay, M.; Aung, T.; Baldassarre, D.; Balkau, B.; Bao, Y.; Barnett, A.H.; Barroso, I.; Basit, A.; Been, L.F.; Beilby, J.; Bell, G.I.; Benediktsson, R.; Bergman, R.N.; Boehm, B.O.; Boerwinkle, E.; Bonnycastle, L.L.; Burtt, N.; Cai, Q.; Campbell, H.; Carey, J.; Cauchi, S.; Caulfield, M.; Chan, J.C.; Chang, L.C.; Chang, T.J.; Chang, Y.C.; Charpentier, G.; Chen, C.H.; Chen, H.; Chen, Y.T.; Chia, K.S.; Chidambaram, M.; Chines, P.S.; Cho, N.H.; Cho, Y.M.; Chuang, L.M.; Collins, F.S.; Cornelis, M.C.; Couper, D.J.; Crenshaw, A.T.; van Dam, R.M.; Danesh, J.; Das, D.; de Faire, U.; Dedoussis, G.; Deloukas, P.; Dimas, A.S.; Dina, C.; Doney, A.S.; Donnelly, P.J.; Dorkhan, M.; van Duijn, C.; Dupuis, J.; Edkins, S.; Elliott, P.; Emilsson, V.; Erbel, R.; Eriksson, J.G.; Escobedo, J.; Esko, T.; Eury, E.; Florez, J.C.; Fontanillas, P.; Forouhi, N.G.; Forsen, T.; Fox, C.; Fraser, R.M.; Frayling, T.M.; Froguel, P.; Frossard, P.; Gao, Y.; Gertow, K.; Gieger, C.; Gigante, B.; Grallert, H.; Grant, G.B.; Grrop, L.C.; Groves, C.J.; Grundberg, E.; Guiducci, C.; Hamsten, A.; Han, B.G.; Hara, K.; Hassanali, N.; Hattersley, A.T.; Hayward, C.; Hedman, A.K.; Herder, C.; Hofman, A.; Holmen, O.L.; Hovingh, K.; Hreidarsson, A.B.; Hu, C.; Hu, F.B.; Hui, J.; Humphries, S.E.; Hunt, S.E.; Hunter, D.J.; Hveem, K.; Hydrie, Z.I.; Ikegami, H.; Illig, T.; Ingelsson, E.; Islam, M.; Isomaa, B.; Jackson, A.U.; Jafar, T.; James, A.; Jia, W.; Jöckel, K.H.; Jonsson, A.; Jowett, J.B.; Kadowaki, T.; Kang, H.M.; Kanoni, S.; Kao, W.H.; Kathiresan, S.; Kato, N.; Katulanda, P.; Keinanen-Kiukaanniemi, K.M.; Kelly, A.M.; Khan, H.; Khaw, K.T.; Khor, C.C.; Kim, H.L.; Kim, S.; Kim, Y.J.; Kinnunen, L.; Klopp, N.; Kong, A.; Korpi-Hyövälti, E.; Kowlessur, S.; Kraft, P.; Kravic, J.; Kristensen, M.M.; Krithika, S.; Kumar, A.; Kumate, J.; Kuusisto, J.; Kwak, S.H.; Laakso, M.; Lagou, V.; Lakka, T.A.; Langenberg, C.; Langford, C.; Lawrence, R.; Leander, K.; Lee, J.M.; Lee, N.R.; Li, M.; Li, X.; Li, Y.; Liang, J.; Liju, S.; Lim, W.Y.; Lind, L.; Lindgren, C.M.; Lindholm, E.; Liu, C.T.; Liu, J.J.; Lobbens, S.; Long, J.; Loos, R.J.; Lu, W.; Luan, J.; Lyssenko, V.; Ma, R.C.; Maeda, S.; Mägi, R.; Männisto, S.; Matthews, D.R.; Meigs, J.B.; Melander, O.; Metspalu, A.; Meyer, J.; Mirza, G.; Mihailov, E.; Moebus, S.; Mohan, V.; Mohlke, K.L.; Morris, A.D.; Mühleisen, T.W.; Müller-Nurasyid, M.; Musk, B.; Nakamura, J.; Nakashima, E.; Navarro, P.; Ng, P.K.; Nica, A.C.; Nilsson, P.M.; Njolstad, I.; Nöthen, M.M.; Ohnaka, K.; Ong, T.H.; Owen, K.R.; Palmer, C.N.; Pankow, J.S.; Park, K.S.; Parkin, M.; Pechlivanis, S.; Pedersen, N.L.; Peltonen, L.; Perry, J.R.; Peters, A.; Pinidiyapathirage, J.M.; Platou, C.G.; Potter, S.; Price, J.F.; Qi, L.; Radha, V.; Rallidis, L.; Rasheed, A.; Rathman, W.; Rauramaa, R.; Raychaudhuri, S.; Rayner, N.W.; Rees, S.D.; Rehnberg, E.; Ripatti, S.; Robertson, N.; Roden, M.; Rossin, E.J.; Rudan, I.; Rybin, D.; Saaristo, T.E.; Salomaa, V.; Saltevo, J.; Samuel, M.; Sanghera, D.K.; Saramies, J.; Scott, J.; Scott, L.J.; Scott, R.A.; Segrè, A.V.; Sehmi, J.; Sennblad, B.; Shah, N.; Shah, S.; Shera, A.S.; Shu, X.O.; Shuldiner, A.R.; Sigurdsson, G.; Sijbrands, E.; Silveira, A.; Sim, X.; Sivapalaratnam, S.; Small, K.S.; So, W.Y.; Stancáková, A.; Stefansson, K.; Steinbach, G.; Steinthorsdottir, V.; Stirrups, K.; Strawbridge, R.J.; Stringham, H.M.; Sun, Q.; Suo, C.; Syvänen, A.C.; Takayanagi, R.; Takeuchi, F.; Tay, W.T.; Teslovich, T.M.; Thorand, B.; Thorleifsson, G.; Thorsteinsdottir, U.; Tikkanen, E.; Trakalo, J.; Tremoli, E.; Trip, M.D.; Tsai, F.J.; Tuomi, T.; Tuomilehto, J.; Uitterlinden, A.G.; Valladares-Salgado, A.; Vedantam, S.; Veglia, F.; Voight, B.F.; Wang, C.; Wareham, N.J.; Wennauer, R.; Wickremasinghe, A.R.; Wilsgaard, T.; Wilson, J.F.; Wiltshire, S.; Winckler, W.; Wong, T.Y.; Wood, A.R.; Wu, J.Y.; Wu, Y.; Yamamoto, K.; Yamauchi, T.; Yang, M.; Yengo, L.; Yokota, M.; Young, R.; Zabaneh, D.; Zhang, F.; Zhang, R.; Zheng., W.; Zimmet, P.Z.; Altshuler, D.; Bowden, D.W.; Cho, Y.S.; Cox, N.J.; Cruz, M.; Hanis, C.L.; Kooner, J.; Lee, J.Y.; Seielstad, M.; Teo, Y.Y.; Boehnke, M.; Parra, E.J.; Chambers, J.C.; Tai, E.S.; McCarthy, M.I.; Morris, A.P.To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.Item Pregnancy outcome of monochorionic twins: does amnionicity matter?(Cambridge University Press, 2011) Dias, T.; Contro, E.; Thilaganathan, B.; Khan, H.; Zanardini, C.; Mahsud-Dornan, S.; Bhide, A.OBJECTIVE: To compare the fetal loss rate of monochorionic (MC) twin pregnancies according to their amnionicity. METHODS: A retrospective review of all MC pregnancy outcomes in a tertiary centre. Pregnancy outcomes were compared for monochorionic monoamniotic (MCMA) versus monochorionic diamniotic (MCDA) pregnancies. RESULTS: 29 MCMA and 117 MCDA twin pregnancies were identified. The overall fetal loss rate was significantly higher in MCMA (23/52, 44.2%) compared to MCDA pregnancies (28/233, 12%, Chi squared = 30.03, p < .001). Kaplan-Meier analysis showed that fetal survival rate in MCDA twinswere significantly higher than in MCMA twins (Log-rank Chi-squared = 27.9, p < .0005). Early pregnancy ultrasound identified the causes for these fetal losses in some MCMA twins. After exclusion of identifiable causes, the difference in fetal survival was not significant in the two groups (Log-rank chi-squared = 0.373, p = .54). CONCLUSION: The loss rate for MCMA twins is high and occurs mainly due to discordant congenital abnormality, conjoint twins or twin reversed arterial perfusion (TRAP) sequence. Although the fetal loss rate in MCDA is lower than in MCMA pregnancies, the majority of fetal loss in MCDA pregnancies cannot be predicted at the first scan at presentation. The data of this study questions the widespread policy of a difference in the scheduling of elective delivery for MCMA and MCDA twins.