Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kaur, N."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Growth and Characterization of Seed‑Assisted, EDTA‑Treated, Chemical Bath‑Deposited CdS
    (Journal of Electronic Materials, 2021) Kumarage, W. G. C.; Wijesundera, R. P.; Seneviratne, V. A.; Jayalath, C. P.; Gunawardhana, N.; Kaur, N.; Comini, E.; Dassanayake, B. S.
    A simple low-cost method to enhance the electrical properties including open-circuit voltage (VOC), flat-band potential (Vfb) and short-circuit current (ISC) in the photoelectrochemical (PEC) cell of cadmium sulfide (CdS) thin films is presented. The PEC cell properties were determined using the configuration Pt/0.1 M Na2S2O3/ CdS. Three different sets of CdS thin films were grown: (a) chemical bath-deposited CdS (CBD-CdS), (b) electrodeposited seed-assisted CBD-CdS (ED/CBD-CdS) and (c) ED/CBD-CdS deposited under the presence of ethylenediaminetetraacetic acid (EDTA) in a reaction solution of CBD (ED/(CBD+EDTA)-CdS). The FE-SEM images suggested the formation of clusters with spherical shape in the presence of a seed layer. All the samples grown with seed layers demonstrated improved ISC and VOC values in the PEC cell compared to the CBD-CdS films due to better contact between the substrate and CBD-CdS. Furthermore, the carrier concentration (ND) and Vfb were also found to improve due to the introduction of the seed layer. In the case of ED/(CBD+EDTA)-CdS, the cluster size was found to be smaller, giving rise to a larger effective surface area. The improved effective surface area, interparticle connections and adhesion of CdS to the FTO substrate resulted in superior electrical properties of ED/(CBD+EDTA)-CdS compared to ED/CBD-CdS and CBD-CdS films.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify