Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kaneko, M."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    On sum formulas for Mordell - Tornheim zeta values.
    (International Research Symposium on Pure and Applied Sciences, 2017 Faculty of Science, University of Kelaniya, Sri Lanka., 2017) Pallewatta, M.; Kaneko, M.
    The multiple zeta values are real numbers which are studied by many people in different fields. The multiple zeta values with depth 1 are the Riemann zeta values. The sum formulas are considered as one of the most famous relations among multiple zeta values. In our research, we study a slightly different type of sums known as Mordell-Tornheim zeta values. Mordell-Tornheim zeta values can be expressed as a rational linear combination of multiple zeta values with same depth and weight. We have obtained new sum formulas for Mordell-Tornheim zeta values in the case of depth 2 and 3, expressing the sums as single multiples of Riemann zeta values. Moreover, we introduce reciprocity relations between the Mordell-Tornheim series of even arguments with depth 3 in terms of double and triple zeta values by using integrals of products of Bernoulli polynomials.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify