Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jayamali, G. G. S. D."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Creating a Sri Lankan Micro-Emotion Dataset for a Robust Micro-Expression Recognition System
    (Department of Industrial Management, Faculty of Science, University of Kelaniya Sri Lanka, 2022) Jayakodi, J. A. L. P.; Jayamali, G. G. S. D.; Hirshan, R.; Aashiq, M. N. M.; Kumara, W. G. C. W.
    In interpersonal communication, the human face provides important signals of a person’s emotional states and intentions. Furthermore, micro-emotions play a major role in understanding hidden intentions. In psychological aspects, detecting micro-emotions play a major role. In addition, lie detection, criminal identification, and security systems are other applications, where detecting micro-emotion accurately is essential. Revealing a micro-expression is quite difficult for humans because people tend to conceal their subtle emotions. As a result, training a human is expensive and time-consuming. Therefore, it is important to develop robust computer vision and machine learning methods to detect micro-emotions. Convolutional Neural Network (CNN) is the most used deep learning-based method in recent years. This research focuses on developing a 3D-CNN model to detect and classify Micro-emotions and creating a local Micro-emotion database. From the related research work we have considered this is the first attempt made at creating a Sri Lankan micro-emotion dataset. Having a local micro-emotion dataset is essential in formulating more accurate real-time applications focused on deep learning methods. Therefore, in this research, our main objective is to create a Sri Lankan micro-emotion database for future micro-emotion recognition and detection research.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify