Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dheeba, J."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Deep Learning based Screen Display Fault Detection System for Vehicle Infotainment Applications
    (Department of Industrial Management, Faculty of Science, University of Kelaniya., 2025) Ramesh, B.; Dheeba, J.; Raja Singh, R.
    Modern vehicles are integrated with in-vehicle infotainment systems and are subject to software faults. This paper explores the application of deep learning algorithms to identify visual defects in infotainment systems and automatically document the issues. A real-time capable framework is deployed, delivering immediate feedback on detected defects. The proposed system performs thorough analysis, automatically summarizes detected defects, and generates detailed reports, significantly reducing manual documentation effort and supporting faster decision-making. The performance of the developed models is evaluated using Convolutional Neural Networks (CNN) and Artificial Neural Network (ANN) classifiers. Experimental results demonstrate the superior performance of the CNN model, achieving a training accuracy of 82.21% with an F1 score of 0.85, and a testing accuracy of 80.51% with an F1 score of 0.811. In comparison, the ANN model achieves a training accuracy of 70.18% with an F1 score of 0.7314, and a testing accuracy of 69.32% with an F1 score of 0.705.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify