Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Angalaeswari S."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Accelerating Meta-Learning with the Enhanced Reptile Algorithm for Rapid Adaptation in Neural Networks
    (Department of Industrial Management, Faculty of Science, University of Kelaniya., 2025) Shree Smeka J.; SheejaKumari V.; Vijaya Raj M.; Santhosh Kumar S. P.; Angalaeswari S.
    Reptile is an innovative meta-learning approach that improves the process of neural networks training across diverse tasks. Reptile differs from the preference gradient strategies. It searches for a model weight vector which can enable a model to learn a new set of tasks with a small number of weight updates. This is accomplished via a first-order optimization process which makes it less intricate than other strategies like model-agnostic meta-learning MAML. Reptile is said to sample a number of tasks and then trains the model on each of the tasks via performing a series of a few gradient steps, systematically updating the model towards the average gradient direction across all the tasks. This enables the model to generalize well with new tasks trained with few iterations, thus proving beneficial in few-shot learning. Reptile enables faster adaptation of the model by focusing on the learning of better initial parameters thereby lowering computational overhead and the training duration. The algorithm is noted for its ability not only to learn but also to adapt itself to new tasks in a short period of time, which greatly extends the scope of its application, especially in areas where data is scarce. Examples of these areas are robotics, personalized advertisements, and decision-making approaches that need to operate in real time. Reptile Algorithm builds good on gradient-based approaches and can spearhead volumetric applications of meta reasoning by being exceptionally efficient, scalable and less computationally intensive.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify