Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Afolabi, B.O."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Mutational analysis of driver and non-driver mutations of Philadelphia chromosome-negative myeloproliferative neoplasms;diagnosis and recent advances in treatment
    (Science Publications, 2024) Afolabi, B.O.; Riwaz, A.; Weerasena, J.; Williams, S.; Denipitiya, T.; Somawardana, B.; Faizan, M.; Galhena, B.P.
    Myeloproliferative neoplasms (MPNs) are hematological disorders affecting myeloid stem cells. They are classified as Philadelphia (Ph) chromosome positive-chronic myeloid leukemia, and Ph-negative polycythemia vera, essential thrombocythemia, primary myelofibrosis, chronic neutrophilic leukemia, chronic eosinophilic leukemia, juvenile myelomonocytic leukemia, and MPN unclassifiable. This review is mainly focused on the Ph-negative MPNs namely, PV, ET, and PMF. These affect both males and females with a slight male predominance, with patients mainly presenting in the seventh decade. Patients often present with thrombotic events resulting in complications that lower survival rates. The major driver mutations that have been identified in MPNs are JAK2 Exon 14, JAK2 Exon 12, MPL Exon 10, and CALR Exon 9. The importance of these driver mutations gives due recognition to their inclusion into the 2022 diagnostic criteria of the MPN WHO Classification. However, other non-driver mutations have also been reported, especially in triple-negative cases. These mutations lead to downstream constitutive activation of the JAK/STAT signaling pathway, as well as the MAPK, and PI3K/Akt pathways. Insights into the molecular pathogenesis of MPN and its association with JAK2, CALR, and MPL mutations have identified JAK2 as a rational therapeutic target. Thus, as an approach to MPN therapy, JAK2 inhibitors, such as ruxolitinib, have been shown to effectively inhibit JAK2, and are currently in clinical trials in combination with other drug classes. This review comprehensively examines the molecular markers of the main Ph-negative MPNs, as well as diagnosis and treatment options.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify