4.27 Structure of Fermat triples

R.A.D.Piyadasa
Department of Mathematics, University of Kelaniya
(Dedicated to late Prof. S.B.P.Wichramasuriya)

Abstract

The structure of Fermat's triples can be immensely useful in finding a simple proof of Fermata's Last Theorem. In this contribution, the structure of Fermat's triples is determined using Fermat's little theorem producing a new lower bound for the triples. Fermat's last theorem can be stated as the equation $$
\begin{equation*} z^{n}=y^{n}+x^{n}(x, y)=1 \tag{1} \end{equation*}
$$ has no non-trivial integral solutions for x, y, z any prime $n>2$. Due to the famous work of Germain Sophie, if we assume the existence of non trivial integral triples (x, y, z) for any prime $n>2$ satisfying (1), there may be two kinds of solutions, namely, one of (x, y, z) is divisible by n and none of (x, y, z) is divisible by n, and the well known lower bound for positive x, y, z is n, that is, if x is the least, then $x>n$ [1]. Let us first consider the triples satisfying $x y z \neq 0(\bmod n)$. Then $(z-x)=y_{\alpha}^{n}, z-y=x_{\alpha}^{n}$, $x+y=z_{\alpha}^{n}$, where $x_{\alpha}, y_{\alpha}, z_{\alpha}$ are the factors of x, y, z respectively. $$
\begin{align*} & z_{\alpha}^{n}-y_{\alpha}^{n}-x_{\alpha}^{n}=x+y-(z-x)-(z-y)=2(x+y-z) \tag{2}\\ & x+y-z=z_{\alpha}^{n}-z_{\alpha} \xi=z_{\alpha}\left(z_{\alpha}^{n-1}-\xi\right)=z_{\alpha}\left(z_{\alpha}^{n-1}-1+1-\xi\right) \tag{3} \end{align*}
$$

,where $z=z_{\alpha} \xi$.Since $x+y-z \equiv 0(\bmod n)$, which follows from (1) and Fermat's little theorem, and also $z_{\alpha}^{n-1}-1=0(\bmod n)$.Hence $1-\xi \equiv 0(\bmod n)$ and $\xi=(n k+1)$, where k is an integer which is non negative since $\xi \neq 0$. Therefore, we conclude in a similar manner that
$z=z_{\alpha}(n k+1)$
$y=y_{\alpha}(n l+1)$
$x=x_{\alpha}(n m+1)$
where k, l, m are positive integers and $x_{\alpha} \geq 1$, in particular. Also, $x+y-z=x-x_{\alpha}^{n} \equiv 0(\bmod n)$, from which it follows at once that $x . \geq n+x_{\alpha}^{n}>n$, which first obtained in a different manner by Grunert in 1891[1].In this contribution, it is shown that x very well greater than n^{2}.
Proof.
$2(x+y-z)=z_{\alpha}^{n}-y_{\alpha}^{n}-x_{\alpha}^{n}=\left(z-z_{\alpha} n k\right)^{2}-\left(y-y_{\alpha} n l\right)^{n}-\left(x-x_{\alpha} n m\right)^{2}=n^{2} L$
due to $z^{n}=y^{n}+x^{n}$ and hence $2(x+y-z)=n^{2} L$.
where L is an integer, Hence, $x+y-z \equiv 0\left(\bmod n^{2}\right)$. It is easy to check that $x+y-z \equiv 0\left(\bmod z_{\alpha} y_{\alpha} x_{\alpha} n^{2}\right)$

But $x+y-z=x-x_{\alpha}^{n}$ and all numbers $z_{\alpha}, y_{\alpha}, x_{\alpha}, n$ co-prime to one another, and hence

$$
\begin{equation*}
x>n^{2} z_{\alpha} y_{\alpha} x_{\alpha}+x_{\alpha}^{n} \tag{6}
\end{equation*}
$$

and note also that $z_{\alpha}, y_{\alpha}>1$ which guarantees that x is very well greater than n^{2}. We deduce that

$$
\begin{gather*}
z^{n}-z \equiv 0\left(\bmod n^{2}\right) \tag{a}\\
y^{n}-y \equiv 0\left(\bmod n^{2}\right) \tag{b}\\
x^{n}-x \equiv 0\left(\bmod n^{2}\right) \tag{c}
\end{gather*}
$$

since $x+y-z=\left(z-n k z_{\alpha}\right)-z=z^{n}-z+n^{2} H$, where H is an integer, from which (a) follows, and (b) and (c) follows in a similar manner. Now it is easy to deduce that

$$
\begin{equation*}
(x+y)^{n}-z^{n} \equiv 0\left(\bmod n^{3}\right) \tag{7}
\end{equation*}
$$

In case of (7), one has to use the simple result that if $a b \neq 0(\bmod n)$ and $a-b \equiv 0\left(\bmod n^{\mu}\right)$, then $a^{n}-b^{n} \equiv 0\left(\bmod n^{\mu+1}\right)$, where $n \geq 3$ is a prime.
Now assume that $x y z \equiv 0(\bmod n)$, and suppose that $y \equiv 0(\bmod n)$, for example.
Then, since y is of the $n^{n \beta} \alpha^{n} \gamma^{n}$, it follows from the above result that $z-x=n^{n \beta-1} \alpha^{n}$, where α may takes positive values including $\alpha=1$. Now the equation (4)takes the form $z_{\alpha}^{n}-n^{n \beta-1} \alpha^{n}-x_{\alpha}^{n}=2(x+y-z)$
Now, since $x+y-z \equiv 0\left(\bmod n^{2}\right)$, it follows that $z_{\alpha}^{n}-x_{\alpha}^{n} \equiv 0\left(\bmod n^{2}\right)$, and it is easy to deduce

$$
\begin{equation*}
x+y-z \equiv 0\left(\bmod z_{\alpha} \cdot n^{n \beta} \alpha \cdot x_{\alpha}\right) \tag{9}
\end{equation*}
$$

Hence $x-\delta^{n} \equiv 0\left(\bmod z_{\alpha} \cdot n^{n \beta} \alpha \cdot x_{\alpha}\right)$ and from which we deduce that $x>z_{\alpha}: n^{n \beta} \alpha \cdot x_{\alpha}$, where $\beta \geq 2$. The equations (a), (b),(c) can be obtained exactly in the same manner as before. It is easy to understand that above equations hold even if one assumes $z \equiv 0(\bmod n)$.

References

(1)Rebenboim, Paulo,13 Lectures on Fermat's last theorem, Springer-Verlag, New York, 1979,pp226.

