New Theorem on Primitive Pythagorean Triples

R. A. D. Piyadasa ${ }^{1}$ and N. G. A. Karunathilake ${ }^{2}$

As a result of our survey on primitive Pythagorean triples, we were able to prove the following theorem:
All primitive Pythagorean triples can be generated by almost one parameter α,
satisfying $\alpha>\sqrt{2} \quad+1$. Furthermore, α is either an integer or of the form $\alpha={ }^{\nsim}$ where γ
and $\eta \quad(>1)$ are relatively prime numbers.
The proof of the theorem can be briefly outlined as follows:
Taking $z=y+2$ for some $p \geq 1, z^{2}=y^{2}+x^{2}$ can be put into the form
$1+\underline{p}^{2}=1+\underline{x}^{2}$
$y \quad y$
If $\alpha=\frac{x}{p}$, then the above equation can be put into the form
$(1+\beta)^{2}=1+\alpha^{2} \beta^{2}$ \qquad
where $\frac{1}{\beta}=\frac{\alpha^{2}-1}{2}$. Then the above equation can be reduced into
$+\underline{\alpha}_{2}^{\underline{2}} \quad \begin{gathered}2 \\ \underline{-1} \\ = \\ 2\end{gathered}{ }^{\underline{2}} \quad \begin{gathered}2 \\ \\ \end{gathered}$.
In order to generate primitive triples, the above equation has to be multiplied by 4 if α is even and η
${ }^{4}$ if $\alpha=\eta^{\underline{Y}}$. Now we are able to generate all the primitive Pythagorean triples
if α satisfies the conditions of our theorem and $\underline{\alpha}_{\underline{2}}=\underline{1}$ is reduced to cancel 2 in the 2
denominator whenever necessary. The condition $\alpha>\sqrt{2}+1$ and α is either integer or of the form $\alpha=\eta^{\underline{Y}}(\eta>1)$ with γ and η are relatively prime odd be imposed after a careful study of the equation. In conclusion, an algorithm can be developed to determine p and y so that $((y+p), y, x)$ is a primitive Pythagorean triple in the order $x<y<y+p$ for given x . A new theorem on primitive Pythagorean triples is found and it may be useful in understanding the Fermat's Last Theorem.

Key Words: Primitive pythagorean triples, Fermat's Last Theorem.

[^0]
[^0]: ${ }^{1}$ Department of Mathematics, University of Kelaniya, Sri Lanka.
 ${ }^{2}$ Department of Mathematics, University of Kelaniya, Sri Lanka. Karu_gamag@yahoo.co.uk

