New Theorem on Primitive Pythagorean Triples

R. A. D. Piyadasa¹ and N. G. A. Karunathilake²

As a result of our survey on primitive Pythagorean triples, we were able to prove the following theorem:

All primitive Pythagorean triples can be generated by almost one parameter α , satisfying $\alpha > \sqrt{2}$ + 1. Furthermore, α is either an integer or of the form $\alpha = \frac{2}{n}$ where γ

and η (> 1) are relatively prime numbers.

The proof of the theorem can be briefly outlined as follows:

where $\frac{1}{\beta} = \frac{\alpha^2 - 1}{2}$. Then the above equation can be reduced into $+\frac{\alpha^2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1$

In order to generate primitive triples, the above equation has to be multiplied by 4 if α is even and η ⁴ if $\alpha = \eta^2$. Now we are able to generate all the primitive Pythagorean triples if α satisfies the conditions of our theorem and $\frac{\alpha_2 = 1}{2}$ is reduced to cancel 2 in the 2 denominator whenever necessary. The condition $\alpha > \sqrt{2} + 1$ and α is either integer or of the form $\alpha = \eta^2$ ($\eta > 1$) with γ and η are relatively prime odd be imposed after a careful study of the equation . In conclusion, an algorithm can be developed to determine p and y so that ((y + p), y, x) is a primitive Pythagorean triple in the order x < y < y + p for given x. A new theorem on primitive Pythagorean triples is found and it may be useful in understanding the Fermat's Last Theorem.

Key Words: Primitive pythagorean triples, Fermat's Last Theorem.

¹ Department of Mathematics, University of Kelaniya, Sri Lanka.

² Department of Mathematics, University of Kelaniya, Sri Lanka. Karu_gamag@yahoo.co.uk