Derivation of Equations that satisfy Dirac's Equation and invariance of transformations similar to Guage Transformations under mixed numbers.

W. P.T Hansameenu, L.N.K de Silva, T.P de Silva ${ }^{1}$
Department of Mathematics, University of Kelaniya, Sri Lanka.
Department of Mathematics. University of Sri Jayawardhanapura, Sri Lanka ${ }^{1}$.

Abstract

Mixed number is a sum of a scalar and " vector " part. If we consider the two mixed numbers $(a+\underset{-}{ })$ and $(b+\underset{-}{ })$ the summation and product of the mixed numbers are defined respectively as, $(a+\underline{A}) \oplus(b+\underline{B})=a+b+\underline{A}+\underline{B}$

$(a+\underline{A}) \otimes(b+\underline{B})=a b+a \underline{B}+\underline{A} b+\underline{A} \cdot \underline{B}+i \underline{A} \times \underline{B}$

Dirac's Equation can be written as

$$
\begin{equation*}
\bar{P} \vec{\psi}=m_{0} c \vec{\psi} \tag{2}
\end{equation*}
$$

Dirac's momentum and wave function can be defined using mixed numbers as
$\bar{P}=\left(\frac{i E}{c}, \bar{p}\right)$
$\vec{\psi}=\left(\frac{i \psi_{0}}{c}, \bar{\psi}\right)$
Then from (1)

$$
\begin{equation*}
\left(\frac{i E}{c}, \bar{p}\right) \otimes\left(\frac{i \psi_{0}}{c}, \bar{\psi}\right)=m_{0} c\left(\frac{i \psi_{0}}{c}, \bar{\psi}\right) \tag{3}
\end{equation*}
$$

Equating real and imaginary parts of both sides of Eq.(3),

$$
\begin{align*}
& \nabla \psi_{0}-\frac{\partial \bar{\psi}}{\partial t}-\frac{m_{0} c^{2}}{\hbar} \bar{\psi}+c \nabla \times \bar{\psi}=0- \tag{4}\\
& -\frac{\hbar}{c^{2}} \frac{\partial \psi_{0}}{\partial t}-\hbar \nabla \cdot \bar{\psi}-m_{0} \psi_{0}=0 \tag{5}
\end{align*}
$$

These solutions satisfy the Dirac's Equation.

Now consider the transformation similar to Gauge Transformations,
$\overline{\psi^{\prime}}=\bar{\psi}+\nabla A$
$\psi_{0}{ }^{\prime}=\psi_{0}+\frac{\partial A}{\partial t}$
Under these transformations Eq. (4) and (5) give,
$\nabla \psi_{0}^{\prime}-\frac{\partial \overline{\psi^{\prime}}}{\partial t}-\frac{m_{0} c^{2}}{\hbar} \overline{\psi^{\prime}}+c \nabla \times \overline{\psi^{\prime}}=0$
$\frac{1}{c^{2}} \frac{\partial \psi_{0}{ }^{\prime}}{\partial t}+\nabla \cdot \overline{\psi^{\prime}}+\frac{m_{0} \psi_{0}{ }^{1}}{\hbar}=0$
Thus Eq .(4) and (5) are invariant under these transformations.

References

(1)W P T Hansameenu, L N K de Silva, T P de Silva, Matrix representation of mixed numbers and quaternions - $10^{\text {th }}$ Annual Research Symposium, 2009, University of Kelaniya. Kelaniya, Sri Lanka.
(2) Arbab. I Arbab, The Quaternionic Quantum Mechanics, arXiv:1003.0075vI [physicsgenph], 27 Feb 2010.
$\mathbf{1 1 5 | P}$ a g e - Proceedings of the Research Symposium 2010-Faculty of Graduate Studies, University of Kelaniya

