T. Shaska, C. Shore, G. S. Wijesiri, "Codes over rings of size p^2 and lattices over imaginary quadratic fields", Finite Fields Appl. 16 (2010) no. 2, 75-87.

Abstract

Let $\ell > 0$ be a square-free integer congruent to 3 mod 4 and 0K the ring of integers of the imaginary quadratic field $K = Q(\sqrt{-\ell})$. Codes *C* over rings 0K/p0K determine lattices $\Lambda\ell(C)$ over *K*. If $p \nmid \ell$ then the ring R := 0K/p0K is isomorphic to Fp^2 or $Fp \times Fp$. Given a code *C* over R, theta functions on the corresponding lattices are defined. These theta series $\theta_{\Lambda\ell(C)}(q)$ can be written in terms of the complete weight enumerators of *C*. We show that for any two $\ell < \ell'$ the first $\frac{\ell+1}{4}$ terms of their corresponding theta functions are the same. Moreover, we conjecture that for $\ell > \frac{p(n+1)(n+2)}{2}$ there is a unique symmetric weight enumerator corresponding to a given theta function. We verify the conjecture for primes p < 7, $\ell \leq 59$, and small *n*.

Keywords

- Codes;
- Lattices;
- Theta functions