T. Shaska, C. Shore, G. S. Wijesiri, "Codes over rings of size p^{2} and lattices over imaginary quadratic fields", Finite Fields Appl. 16 (2010) no. 2, 75-87.

Abstract

Let $\ell>0$ be a square-free integer congruent to $3 \bmod 4$ and OK the ring of integers of the imaginary quadratic field $K=Q(\sqrt{-\ell})$. Codes C over rings $0 K /$ pOK determine lattices $\Lambda \ell(\mathrm{C})$ over K. If $\mathrm{p} \nmid \ell$ then the ring $\mathrm{R}:=0 \mathrm{~K} / \mathrm{pOK}$ is isomorphic to $\mathrm{Fp}{ }^{2}$ or $\mathrm{Fp} \times \mathrm{Fp}$. Given a code C over R , theta functions on the corresponding lattices are defined. These theta series $\theta_{\text {^८(})}(\mathrm{q})$ can be written in terms of the complete weight enumerators of C. We show that for any two $\ell<\ell^{\prime}$ the first $\frac{\ell+1}{4}$ terms of their corresponding theta functions are the same. Moreover, we conjecture that for $\ell>\frac{p(n+1)(n+2)}{2}$ there is a unique symmetric weight enumerator corresponding to a given theta function. We verify the conjecture for primes $\mathrm{p}<7, \ell \leqslant 59$, and small n.

Keywords

- Codes;
- Lattices;
- Theta functions

