
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/368335258

Predicting the Severity of Tornado Events by Learning a Statistical Manifold for

Tornado Property Losses

Preprint · February 2023

DOI: 10.13140/RG.2.2.34754.96963

CITATIONS

0
READS

118

3 authors, including:

Thilini V. Mahanama

University of Kelaniya

20 PUBLICATIONS   9 CITATIONS   

SEE PROFILE

Dimitri Volchenkov

Texas Tech University

162 PUBLICATIONS   1,009 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Thilini V. Mahanama on 08 February 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/368335258_Predicting_the_Severity_of_Tornado_Events_by_Learning_a_Statistical_Manifold_for_Tornado_Property_Losses?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/368335258_Predicting_the_Severity_of_Tornado_Events_by_Learning_a_Statistical_Manifold_for_Tornado_Property_Losses?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thilini-Mahanama?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thilini-Mahanama?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Kelaniya?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thilini-Mahanama?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitri-Volchenkov?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitri-Volchenkov?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Texas_Tech_University?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitri-Volchenkov?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thilini-Mahanama?enrichId=rgreq-d64f58309b14ae2d3acc53f7f8a58fdd-XXX&enrichSource=Y292ZXJQYWdlOzM2ODMzNTI1ODtBUzoxMTQzMTI4MTExODYzODAwNUAxNjc1ODMwNTU4MDQw&el=1_x_10&_esc=publicationCoverPdf


Predicting the Severity of Tornado Events by Learning a Statistical

Manifold for Tornado Property Losses

Thilini Mahanama∗ Pushpi Paranamana† Dimitri Volchenkov‡

Abstract

We examine the relationship between property losses caused by tornadoes and their physical
parameters, namely the tornado path length and width, using data reported by the National
Oceanic and Atmospheric Administration in the United States. We observe that the statistics
of property losses cannot be described by a single distribution but rather by a two-dimensional
statistical manifold of distributions that may reflect two different mechanisms of property loss
compensations. Assessing the difference between distributions of losses caused by tornadoes us-
ing Kolmogorov-Smirnov’s distance, we construct the 2-D manifold using the method of multi-
dimensional scaling. Then we define a curvature coefficient that characterizes the contraction
and expansion of the derived manifold to explain the complex dynamics of the probability dis-
tributions of losses. The regions with expansions identify the ranges of physical parameters for
which the extreme tornado events may occur, which helps in assessing compensation strategies.

Keywords: Risk assessment, tornado property losses, statistical manifold learning

1 Introduction

Actuarial science uses statistics to define ambiguity risks, analyze likelihood of uncertain future
events, and to determine funds needed to pay connected claims. Statistical methods have a long-
standing focus on inference, which is achieved through the creation and fitting of project-specific
probability models (distributions) []. It is noteworthy that statistical methods are essentially top-
down approaches, as it is assumed that we know the distribution from which the empirical data
have been generated, and then the unknown parameters of the model should be estimated from the
available data [1]. Although the use of statistical methods in actuarial science is consecrated by
tradition, the obvious pitfall of such an approach is that the link between input and output variables
is user chosen that may result in a less accurate prediction model especially if the relationships
between variables are highly nonlinear and not easy to understand.

As the increase in data complexity makes classical statistical inference less tractable, the ma-
chine learning approach may be used to recognize patterns and create data clusters which share
common characteristics that may influence the outcome. Machine learning methods constitute a
bottom-up approach, as no particular model is assumed, but one begins with the data and then
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an algorithm develops a model with prediction as the main goal [1]. The key concept of machine
learning methods is a manifold hypothesis, suggesting that natural data lie along low-dimensional
manifolds in high-dimensional data embedding space [2, 3, 4]. Algorithms of machine learning
(based on some manifold related metric) are designed in a way to separate tangled data manifolds
representing meaningful clusters in the data [5]. However, despite convincing prediction results,
the lack of an explicit model (that would allow us to derive a quantitative measure of confidence)
often makes machine learning solutions difficult to directly relate to already existing knowledge [].
Many of machine learning applications result in inaccurate or irrelevant research results, as proper
research protocols are not fully followed [6].

With the rapid increase in rich and unwieldy data arriving from the many industries, it is
important to complement machine learning by statistical modeling to obtain a desired convergence
that would take advantage of the best of both approaches for advancing actuarial science [7]. In
our work, we intend to make a prominent step towards such a convergence of the statistical and
machine learning approaches by defining a hybrid learning algorithm resulting in a two-dimensional
manifold of different statistical models pertained to the physically disparate scales of tornado events.
The proposed novel synthetic technique bearing the certain features of both machine learning and
traditional statistical methods may help to understand and describe rare events and, especially, so
called black swan events that come as a surprise from the point of view of a standard statistical
approach [8].

The risk assessment and compensation strategies for the damage caused by a tornado depend
on its severity [9]. For typical tornadoes, the private insurance companies compensate the prop-
erty losses claimed by their clients [10]. However, they fail to cover the property losses attributed
to severe (extreme) tornado events, as the scale of losses is rather high [11]. For such cases,
the United States Department of Homeland Security introduced Federal Emergency Management
Agency (FEMA) as a special coverage program [12, 13]. When a catastrophic tornado occurs in
a state, the state governor proclaims a state of emergency [14], and, upon presidential approval,
FEMA then distributes funds to the state and local governments [15]. Henceforth, the local gov-
ernments redistribute money to counties and municipalities but not directly to individual tornado
victims.

Enhanced Fujita Scale [16, 17] is commonplace to measure the intensity (degree of damage) of
a tornado. This is limited to a six-degree damage (EF0, EF1,..., EF5) scale based on wind speed
estimates [18, 19]. In [20, 21, 22], the relationship of tornado intensities to their sizes is modeled to
predict tornado intensity when the path length and width are given. Section 1 depicts the physical
parameters (path length and width) of a tornado rated as EF1. [20] used Weibull distributions
for estimating tornado path lengths, widths, and intensities, but these distributional assumptions
fail for high-end tornadoes. We address these limitations by proposing a non-parametric tornado
severity scale on a continuum of its physical parameters.

In [18], we proposed a novel tornado event classification (Tornado Property Loss Scale, TPL-
Scale) accounting for the property losses reported in the storm database published by the National
Oceanic and Atmospheric Administration [24]. We also modeled the non-linear dependence between
property losses and the area affected by tornadoes using a Gaussian copula approach [25]. The
resulting correlation coefficients were not monotonic over time and location, and this parametric
model failed to capture the extreme tornado events.

In this study, we intend to predict extreme tornado events to restructure the two-pronged com-
pensation strategy for tornado-induced damages by learning a statistical manifold for the reported
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Figure 1: The physical parameters (path length and width) of a EF1 tornado occurred in Raleigh,
NC on April 19, 2019, according to National Weather Service, NOAA [23].

tornado events in the NOAA storm database [24]. We categorize tornado data with respect to
the physical parameters (tornado path lengths and tornado path widths) and discern the kernel
densities [26] of their property losses. By analyzing them, we observe that a single statistic can not
be found to describe all possible losses and that the dynamics of statistics are difficult to interpret
(Sec. 2.2).

The objective of this research is to determine potential tornado scales that can cause extreme
tornado events to restructure the tornado compensation strategies based on physical parameters.
We propose a tornado statistical manifold which will help public and private stakeholders to claim
compensations for property losses caused by tornadoes in the United States, see Fig. 2.

We describe a tornado statistical manifold algorithm in detail and utilize it for predicting the
compensation strategies for tornado property losses in the following sections: In section 2, we
study the reported tornado events and define tornado scales based on the physical parameters.
We describe our algorithm for learning a statistical manifold in section 3. Based on the manifold,
we identify the physical parameters for potential extreme tornado events in section 4. Finally, we
make concluding remarks in section 5 and extend our proposed two-dimensional manifold learning
to multidimensional manifold learning by generalizing the algorithm for high-dimensional data.

2 Exploratory Analysis

We analyze the tornado events reported in the U.S. national tornado database [24] and distinguish
them based on their physical parameters. As a preliminary study, we discern the probability
distributions of property losses to describe different compensation strategies for tornado damages
used in the United States.
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Figure 2: Statistical Manifold Learning Algorithm for Tornado Risk Assessment

2.1 Categorizing Tornado Data with respect to Physical Parameters

In this section, we define tornado scales by taking different physical parameters (tornado path length
and path width) into account. We use the tornado property losses (measured in USD 2019) and
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their physical parameters (measured in ft) for each tornado reported between 1993 and 2018 in the
storm database published by the National Oceanic and Atmospheric Administration [24]. Then, we
define the following scales of physical parameters using logarithms of path lengths (Li, i = 1, · · · , 6)
and path widths (Wj , j = 0, · · · , 3):

Li = {L | log L ∈ [ i , i+ 1)}, i = 1, · · · , 6
Wj = {W | logW ∈ [ j , j + 1)}, j = 0, · · · , 3.

(1)

We further categorize the tornado data using the combinations of length and width scales. Then,
we examine the tornado-induced property losses for each combined scale given below:

A = [Aij ], i = 1, · · · , 6, j = 0, · · · , 3, (2)

where Aij represents the sample of property losses with path lengths in ith length interval, Li, and
path widths in jth width interval, Wj .

2.2 Exploratory Analysis on Determining Bilateral Coverages for Tornado Dam-
ages

This section qualitatively analyzes the distributions of tornado-induced property losses of tornado
scales introduced in section 2.1. We provide the kernel density plots of 24 tornado scales in Fig. 3
and discern the inconsistent distribution shapes. Every tornado scale is characterized by a unique
distribution.

Figure 3: Property losses attributed to tornado scales in A. Aij represents the property losses of
the tornadoes with path lengths in Li, i = 1, · · · , 6 and path widths in Wj , j = 0, · · · , 3.

Since the distribution densities (statistics) in A31, A41, A32, A42 cells are similar, any of the
statistics can be used to predict the losses in neighboring tornado scales. Due to this relatively
high predictability, the insurance companies are mainly prepared to compensate the claims for such
tornado property losses.

The two tornado scales A60 and A61 have the same length scale but different width scales.
Even though the difference between their path widths is only 90 ft, the statistics seem to be
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significantly different. For instance, A60 shows one peak whereas A61 shows several peaks in the
density curves. The tornado scale A61 seems to illustrate an extremity and insurance companies fail
to compensate such losses. For such cases, the government introduced coverage programs to fund
states of emergency. This funding is distributed by the Federal Emergency Management Agency,
which is a part of Homeland Security [27]. They fund the states and local governments, but they
do not compensate the losses of individuals directly.

Thus, we cannot use a single probability distribution (a unique statistic) to examine all the
tornado-induced property losses in the database as their distributions are distinct variants with
reference to the physical parameters. For example, the bimodal density curves in A23 , A62 and
A63 might display the two-fold compensation strategies used in the United States: 1. private
insurance 2. government coverages. We substantiate this claim using the characteristics of the
forthcoming statistical manifold on tornado property losses. As the initial step, we quantitatively
measure the differences between distributions of tornado scales in section 3.1.

3 Learning a Statistical Manifold

In this section, we learn a statistical manifold for describing the difference between distributions of
tornado-induced property losses with respect to different physical parameters. We determine the
pairwise differences between the statistics of tornado scales using Kolmogorov-Smirnov’s distance
and visualize them using classical multidimensional scaling [28, 29, 30]. Based on the resultant
configuration, we learn a statistical manifold by outlining the inherent patterns of physical param-
eters. Then, we use a subdivision surface method to smoothen the proposed manifold. We define a
curvature coefficient based on the expansion and contraction of the manifold to identify the physical
parameters for potential extreme tornado events.

3.1 Constructing a Distance Matrix based on the Differences between Statistics
in Tornado Scales

This section quantitatively compares the distributions of property losses for the tornado scales
introduced in section 2.1. We quantify the pairwise differences between the 24 distributions of
property losses attributed to A using Kolmogorov-Smirnov’s distance [28, 31]. to obtain symmetric
non-parametric distances between two tornado scales. Kolmogorov-Smirnov’s distance between a
pair of tornado scales provides the maximum distance between the empirical distribution functions
of their property losses. We define the empirical distribution function of the property losses of Aij

at a specified loss (z), F̂ij(z), as the proportion of property losses in Aij less than or equal to z:

F̂ij(z) =
1

n

n∑
a=1

I[Za ≤ z], (3)

where n is the number of tornadoes recorded in Aij and I(.) is the identity function. Then, the
Kolmogorov-Smirnov’s distance between the property losses of category Aij and Akl is given by

d(ij,kl) = max
z

(∣∣∣F̂ij(z)− F̂kl(z)
∣∣∣) i, k = 1, · · · , 6, j, l = 0, · · · , 3, (4)
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where F̂kl(z) is the proportion of property losses in Akl less than or equal to z. Consequently, we
define a distance matrix (D) which consists of these pairwise distances.

D = [d(ij,kl)], i, k = 1, · · · , 6, j, l = 0, · · · , 3
= [dpq], p, q = 1, · · · , 24.

(5)

where p and q denote the position of the distance (d) in the matrix based on its row (p) and column
(q). We utilize this distance matrix to investigate a geometrical representation of tornado scales.

3.2 Visualizing Tornado Scales using Classical Multidimensional Scaling for the
Distance Matrix

We apply classical multidimensional scaling (CMDS), also known as principal coordinate analysis
[29, 30, 32] to obtain a visual representation for the distance matrix (D). In particular, we choose
two-dimensional CMDS as higher-dimensional CMDS provide chaotic configurations. In CMDS, a
two-dimensional coordinate matrix for the tornado scales is obtained by minimising the following
loss function (residual sum of square) [33]:

SD (X) =

√ ∑
p 6=q=1,··· ,24

(dpq − ||xp − xq||)2, dpq ∈ D. (6)

By implementing CMDS, we find a new configuration (X) for tornado scales such that their dis-
tances, dpq, are well-approximated by the distances between the corresponding elements in this new
configuration ||xp− xq||. That is, this quadratic optimization problem finds the best possible coor-
dinates based on the distances in D. The coordinate matrix (X) is constructed using the following
steps [34, 35]:

1. Use the distance matrix (D) to calculate the inner product matrix (B),

B = −1

2
JDJ,

where J = I − 1
n11T , I is the identity matrix, 1 is a vector of all ones and n is the number of

tornado scales (n=24).

2. Decompose B using
B = V ΛV T ,

where Λ = diag (λ1, . . . , λn) such that λ1 ≥ . . . ≥ λn ≥ 0, is the diagonal matrix of eigenvalues
of B, and V = [v1, . . . ,vn], is the matrix of corresponding unit eigenvectors.

3. Extract the first and second eigenvalues Λ2 = diag (λ1, λ2) and corresponding eigenvectors
V2 = [v1,v2] .

4. The coordinate matrix (X) is given by

X = [X1,X2]
T = V2Λ

1
2
2 .
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3.3 Learning a Statistical Manifold by Defining a Hybrid Algorithm

The two-dimensional configuration obtained using CMDS, (X1, X2), provides relative positions for
the tornado scales based on their physical parameters and property losses. We comprehend the in-
herent patterns related to each tornado path length scale (Li, i = 1, · · · , 6) considering the sequence
Ai0, Ai1, Ai2, Ai3 and for each width scale (Wj , j = 0, · · · , 3) considering A1j , A2j , A3j , A4j , A5j , A6j

into account. Using periodic interpolating cubic splines [36], we outline the contours of length
scales (Ai0, Ai1, Ai2, Ai3)i=1,··· ,6 and width scales (A1j , A2j , A3j , A4j , A5j , A6j)j=0,··· ,3. To obtain a
two-dimensional manifold, we locate the length contours such that consecutive contours preserve
unit distance. Thus, we learn an underlying framework for a statistical manifold by defining a
hybrid algorithm based on CMDS and ordering with respect for tornado physical parameters, see
Fig. 4(a). In this graph, each vertex represents the probability distribution of property losses in
the corresponding tornado scale (Aij). This configuration of tornado scales preserves the distances
between probability distributions of property losses in A.

The fuzzy structure in Fig. 4(a) can be smoothened by enhancing the degree of edges. We
upgrade the underlying framework in Fig. 4(a) to a smooth manifold by subdividing the ambient
space of contours. In particular, we increase the cardinality of vertices and subdivide each edge
into 10 equally-spaced segments to obtain 10 supplementary vertices. Taking the new vertices into
account, we add contours with respect to width (W ∗j , j = 1, ..30) and length (L∗i , i = 1, ..50)
scales using cubic splines, see Fig. 4(b). As a result, we improve the coarse-grained conformational
manifold in Fig. 4(a) to the smooth statistical manifold illustrated in Fig. 4(b). In fact, each point
on this manifold potentially represents a distribution of property losses for a given path length
and path width. In section 3.4, we delineate the statistics of the manifold by defining a curvature
coefficient.

(a) (b)

Figure 4: (a) The underlying framework and (b) the learned statistical manifold based on the
tornado-induced property losses constructed by implementing classical dimensional scaling and a
method of subdivision surfaces. Aij , i = 1, · · · , 6, j = 0, · · · , 3, represents the tornadoes with
lengths in Li and widths in Wj .
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3.4 Defining a Curvature Coefficient Matrix for the Statistical Manifold

Each point on the learned statistical manifold postulates a statistic based on the property losses
with respect to the physical parameters. Since this curved manifold seems to be too complex to
interpret, we introduce a curvature coefficient to identify the physical parameters for potential
extreme tornado events.

In Fig. 4(b), the bottom leftmost (A10-A11-A21-A20) and the top rightmost (A52-A53-A63-A62)
zones consist of compressed (dense) cells. The cells in the regions A22-A23-A33-A32 and A51-A52-
A62-A61 illustrate relatively high expansions. Non-trivial curvatures are present in both of these
cell types: compressed and expanded cells.

The statistics of property losses in compressed cells hardly change within neighboring cells
(see Fig. 3), i.e., that most of the cell statistics have the same form in densification. However,
since the statistics tremendously vary from one cell to another in expanded cells, we identify the
potential regions for extreme tornado events on the manifold. This variation escalates at the border
zones of compressed and expanded regions. Since the statistics in expansion and transition zones
change abruptly from the conventional statistics, distinct statistics are essential to determine the
significant variations from one cell to another. Thus, the coordinates of expanding cells seem to
provide the range of physical parameters of potential extreme tornado events. Correspondingly,
the compensation strategies for tornado-induced property losses are related to the cell densification
in the statistical manifold, Fig. 4(b).

We determine the degree of cell densifications on the manifold, Fig. 4(b), with respect to
tornado physical parameters. In particular, we quantify these deformations based on the underlying
curvature coefficients of ambient spaces in cells. Then, we define a matrix of curvature coefficients
(C) by comparing each cell area with the mean cell area (0.005) on the manifold as follows:

C = [Cij ]; Cij = 1− Xij

0.005
, i = 1, · · · , 50, j = 1, · · · , 30, (7)

where Xij is the area of a cell with i and j its lower leftmost coordinates. The curvature coefficients
provide positive values for cell contractions and negative values for cell expansions.

In Fig. 5, we provide a visual representation of the curvature coefficient matrix with respect
to the positions of the width (W ∗j , j = 1, ..30) and length (L∗i , i = 1, ..50) coordinates. The
relative positions of some scales in A are shown in exterior locations. According to its color scale,
yellow represents compressed cells (positive curvature coefficients), blue represents expanded cells
(negative curvature coefficients) and transitions between them are shown as green phases. In section
4, we describe how the curvature coefficient matrix is utilized for restructuring the compensation
strategies with respect to tornado physical parameters.

4 A Prospective Framework for Predicting the Compensation Strate-
gies for Tornado Property Losses

In this section, we identify the physical parameters for predicting potential extreme tornadoes by
utilizing the curvature coefficient matrix (7) defined for the learned statistical manifold. Based on
the predicted tornado physical parameters, we envisage the appropriate approach for compensating
property losses. That is, we analyze how the compensation strategies vary with the physical
parameters of a tornado (i.e., from cell to cell on the manifold).
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Figure 5: The visual representation of the curvature coefficient matrix with respect to the positions
of the path width (W ∗j , j = 1, ..30) and path length (L∗i , i = 1, ..50) coordinates of a tornado.
The relative positions of some scales in A are shown in exterior locations. Yellow and blue regions
depict compressed and expanded cells on the manifold, respectively.

We compare the kernel densities of some main tornado scales with the visual representation of
the curvature coefficient matrix in Fig. 5. Clearly, the densities corresponding to the monochromic
zones seem to have unimodal densities with similar statistics. For example, the neighboring region
of A11-A10-A20-A30 illustrates a yellow zone in Fig. 5 with moderately similar unimodal densities.
However, some regions on the curvature portrait show that the small changes in physical parameters
(Li and Wj) trigger vast changes in the statistics corresponding to their property losses. For
example, since the property losses reported for the tornadoes in the zone bounded by A40-A50-
A60-A61 vary dramatically, we observe relatively rapid changes in color from one cell to another.
In some blue zones, we observe the change of modality in densities (unimodal to bimodal). The
bimodal density curves might have resulted from the two-fold compensation strategies for tornado
damages in the United States. In such scenarios, a single statistic fails to estimate such volatilities in
property losses with respect to small changes in tornado path lengths and path widths. Therefore,
the blue regions on the manifold seem to demonstrate potential tornado scales for extreme tornado
events.

Our findings based on the learned manifold and curvature portrait reflect the principle of two-
fold compensation mechanisms for tornado property losses in the United States: the private insur-
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ance companies compensate property losses claimed by individual clients for small-scale tornadoes,
and the government allocate funds for state emergencies due to severe tornadoes. In conclusion,
we determine potential extremities in tornado-induced property losses and identify the potential
physical parameters for extreme tornadoes to suggest a prospective framework for restructuring
compensation strategies via learning a statistical manifold. Our proposed algorithm for tornado
risk assessment consists of following process:

1. Partition tornado data (Path Length, Path Width, Property Loss) with respect to log scales
of physical parameters, Eq. (1)

2. Combine the partitions of physical parameters to categorize tornado property losses, tornado
scales , Eq. (2)

3. Calculate pairwise Kolmogorov-Smirnov’s distances between tornado scales, Eq. (4), to find
the distance matrix, Eq. (5)

4. Implement classical multidimensional scaling to the distance matrix, Eq. (6), to visualize
tornado scales in a new configuration

5. Comprehend the inherent patterns of tornado scales and use cubic splines to learn the under-
lying framework of manifold, Fig. 4(a)

6. Upgrade the underlying framework to a smooth statistical manifold using a subdivision surface
method, Fig. 4(b)

7. Define a curvature coefficient for the learned statistical manifold using cell area, Eq. (7)

8. Determine potential extreme tornadoes and tornado loss compensation strategies using the
curvature measurements, Fig. 5

In Sec. 5, we extend our proposed two dimensional manifold learning to a multidimensional
manifold learning by generalizing the algorithm for high-dimensional data.

5 Conclusion

Since private insurance companies fail to compensate for enormous financial losses due to extreme
tornadoes, the U.S. government has introduced coverage programs such as FEMA. In this study,
we suggested a framework to predict the strategies for compensating for tornado damages. In order
to do that, we learned a statistical manifold by utilizing the reported tornado-induced property
losses and their physical parameters in the national tornado database [24].

According to our findings, no single distribution can describe all tornado events in the database.
By defining a curvature coefficient matrix based on the manifold, we described how the property
losses change with respect to small changes in tornado path lengths and path widths. As a result,
we identified the tornado physical parameters for extreme tornado events. The complexity of the
learned two-dimensional statistical manifold represents the diversity of compensation strategies in
tornado events used for this study.

Our proposed statistical manifold learning algorithm could be generalized for other applications
with high-dimensional data. Suppose we want to predict a variable (Y ) considering its dependency
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on several variables (X1, · · · , Xp). First, we create a meaningful partition for each independent
variable and combine the partitions of different independent variables to categorize the dependent
variable (i.e., scales of Y ). Second, we construct the kernel densities of the scales of Y and find
the distance matrix based on the pairwise Kolmogorov-Smirnov’s distances between scales. Third,
we implement classical multidimensional scaling to illustrate a lower dimensional configuration. As
described in section 3, we learn a statistical manifold using cubic splines and apply a subdivision
surface method to smoothen the manifold. Then, we define a curvature coefficient for the learned
statistical manifold based on cell area. Finally, we analyze the dynamics of curvature measurements
and utilize them for decision-making.

Although both statistics and machine learning may efficiently endow actuarial science, they
have different goals and make different contributions. While machine learning is usually a bottom-
up approach that may emphasize prediction, statistics is rather a top-down approach that may
focus more on inference. A novel synthetic technique proposed in our work takes advantage of
the best of both approaches for improving both inference and prediction of hazardous rare events
exposing banks and insurance companies to unpredictable losses. We have demonstrated that the
common dialogue between statistics and machine learning can bring improvements in both fields.
Regularization and resampling may be required when a single statistic fails to reliably assess risks in
the highly curved regions of a statistical manifold. As distinct and even disparate statistics may be
applied to assess abruptly changing physical properties of tornado events, both fields may contribute
to mutual improvements. https://www.overleaf.com/project/6376c768e858a86888dbce70
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