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Abstract
Contagious diseases are needed to be monitored to prevent
spreading within communities. Timely advice and predictions
are necessary to overcome the consequences of those epi-
demics. Currently, emphasis has been placed on computer
modeling to achieve the needed forecasts, the best example
being the COVID-19 pandemic. Scientists used various
models to determine how diverse sociodemographic factors
correlated and influenced COVID-19 Global transmission and
demonstrated the utility of computer models as tools in disease
management. However, as modeling is done with assumptions
with set rules, calculating uncertainty quantification is essential
in infectious modelling when reporting the results and trustfully
describing the limitations. This article summarizes the infec-
tious disease modeling strategies, challenges, and global
applicability by focusing on the COVID-19 pandemic.
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Introduction
A comprehensive understanding of the functional
changes associated with an infection and its spread is
essential for controlling and preventing an infectious
disease [1]. In the current era, computer modeling has

been widely used in the health sector in making policy
decisions. When modeling is used from an epidemiologic
standpoint, many factors must be considered as param-
eters for an accurate prediction. If one to model the
magnitude of the infection spread, among many factors
to be considered involves the transmission, number of
infected and recovered, extra parameters such as
different age groups, and other associated selections [2].
In accomplishing the maximum results in modeling, the
data must be appropriate, precise, novel, and used in an
organized and timely manner [3]. Ultimately, with its

assumptions, the model should be able to predict real-
world situations with a certain level of accuracy.

The etiological agent for the deadly COVID pandemic is
SARS-CoV-2. The first official record was in 2019
December, from the city of Wuhan, in the province of
Hubei in China [4]. The virus has evolved from Bats and
causes fever and serious pulmonary health conditions in
humans; World Health Organization (WHO) termed it
COVID-19 [5,6]. According to the Worldometer esti-
mation, as of 28thMay 2022, 228 countries and territories

worldwide have reported that a total of 531,054,349
people were officially confirmed as infected with
COVID-19. The deaths due to COVID were 6,309,991.
About 501,689,286 individuals have recovered, while
23,055,072 are currently infected, and 0.2% are in critical
condition. After two and half years, do we know the facts
about this pandemic? Many feel that the number of ca-
sualties and infections is more from COVID-19 than the
documented official records worldwide. As we are still
struggling to understand this deadly virus, to a certain
extent, computer modeling has helped us to familiarize

ourselves with the new pandemic.

Contagious diseases are needed to be monitored to
prevent spreading within communities. Timely advice
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and predictions are necessary to overcome the conse-
quences of those epidemics. Currently, emphasis has
been placed on computer modeling to achieve the
needed forecasts, the best example being the COVID-
19 pandemic. Researchers are using various models to
determine how diverse sociodemographic factors [7]
correlated and influenced the transmission of the
COVID-19 pandemic in different locations worldwide

[8] and demonstrated the utility of computer models as
tools in disease management. However, as modeling is
done with assumptions and set rules, calculating un-
certainty quantification is essential in infectious
modeling when reporting the results accurately and in a
trustworthy manner describing the limitations. This
article summarizes the infectious disease modeling
strategies, challenges, and global applicability by
focusing on the COVID-19 pandemic.
History of mathematical modeling in
infectious diseases
Mathematical modeling has been used to determine the
transmission dynamics and managing numerous
communicable diseases with records of severe pan-
demics. The most commonly researched diseases

include acquired immunodeficiency syndrome,
commonly known as AIDS, coronavirus, influenza or flu
that attacks the lung, and malaria [1]. But as shown in
Figure 1, COVID-19 gets the top slot in the most
published area in infectious modeling in the past two
years. The first user of mathematical modeling for in-
fectious diseases was Daniel Bernoulli in 1760 for
Figure 1

Comparison of number of modeling articles published fo
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Smallpox in England, while the pioneer for modern
mathematical modeling was Ross R. The latter worked
on the dynamics of malaria transmission [1]. Kermack
and McKendrick [9] are the creators of deterministic
compartmental epidemic modeling. The model assumes
that a person’s chance of being vulnerable to infection is
equivalent to the number of infected individuals the
person had associated with [9]. There are several

models in practice for infection predictions and warn-
ings. A forecast is generally made for a time series model
while the linear regression model, a statistical model, is
used in epidemiology to analyze one or many variables
[10,11]. Artificial neural networks are mostly used in
nonlinear analysis, and various Markov models are useful
in DNA alignments, uncertainty measurements with
Bayesian modeling, and Complex networks [12,13]. The
model grey dynamics can be used to forecast peaks [14].
The basic reproduction number/rate in epidemiology is
termed R0 and calculates infectious agents’ transmission

capability within populations [15]. R0 is defined as the
average number of secondary infections an infected in-
dividual can cause in a population where everybody is
considered susceptible. Epidemiologists can estimate
R0 using contact-tracing data, cumulative incidence
data, or mathematical models with ordinary differential
equations [15].

The practice has proved that what is essential is that
when a health crisis occurs in a community, models used
for forecasting should be capable of delivering active

measures for halting the infections from spreading than
r infectious diseases, SARS-CoV-2 and COVID-19.
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taking part in passive prevention. The hybrid stochastic
model can include many parameters such as interactions
within the public, diverse patterns in an infection
spreading, the number of participants in screening,
sensitivity, and testing frequency, delays in getting the
test result, and adherence to quarantine processes [16].

Mathematical models used in the COVID-19
pandemic
The purpose of a screening test is to detect individuals
who neither present any symptoms associated with the
infection nor a known or suspected contact history with
the particular disease. Regarding the COVID-19
pandemic, many communities were subjected to mass
screening as a precautionary measure to isolate unde-
tected cases and prevent further transmission. Mathe-
matical models and numerical simulations are

extensively used to study the value of screening in
managing epidemics [16]. During COVID-19 pandemic,
many higher education institutes worldwide used the
compartmental model [17], and Liège University used
the Hybrid stochastic model [16] to determine their
screening efficacies. According to Liège University’s
study, community participation and regular screening
were the key features in reducing transmission [16].

Drew et al. [18] compared the actual progression of
COVID-19 among ten countries hugely affected by the

disease. Data recorded up to November 2020 were
considered for “re-forecasts” with the aid of two models.
One is the SIR or susceptibleeinfectederecovered/
removed model, a compartment-type model widely used
in evolving epidemics. The other is the Holt-Winters time
series model, a statistical approach [18]. Bertozzi et al. [2]
demonstrated the convenience of parsimonious models
in delivering early-time data providing manageable out-
lines to generate policy decisions. Their study showed
the effectiveness of modeling by linking time-series data
to a specific area. Additionally, these can access and

predict how effective isolation is as a control measure.

Further, the researchers underlined the risks of reducing
nonpharmaceutical public health interventions (NPHI)
due to the lack of vaccines and antiviral therapies [2].
Imperial College used an agent-based method, modeling
people getting infected and recovering from interacting
with other persons within the community. But the
Bertozzi study used threemacroscopicmodels, the SIR, a
model for exponential or rapid growth rate, and the self-
exciting or Hawkes process due to uncomplicatedness,

usage of few parameters, and the capability of describing
the pandemic on a zonal scale [2].

Computer modeling helped prepare rules and guidelines
at the national level within a country or globally for the
cross-border closure during COVID-19, to prevent the
virus from spreading [19]. Further, during the crisis,
mathematical modeling assisted in developing strategies
www.sciencedirect.com
regarding social distancing, wearing masks, and hand
hygiene [20e22]. Table 1 summarizes the selective
COVID-19 modeling studies reported from
different countries.

The study by Gao and Wang [34] discusses the likeli-
hood of an epidemic’s occurrence with the IDD model.
At the same time, for the situation assessments in public

health emergencies (PHEs), it was a dynamic Bayesian
network (DBN). According to analysis data in solitary
confinements, the confirmed patients from China for
COVID was 1.503, and in the city of Wuhan, it was
1.729, similar to real figures. By the 21st day, and with
self-isolation in practice, the confirmed COVID infec-
ted number was 24495, and the model estimation was
24085 with a 95% CI of 23988e25056 [34]. They
demonstrated that forecasts about the situation assess-
ments for the COVID-19 created with DBN were
consistent with the epidemic’s real ground situation and

the progression of the infection. They highlight the
competence of the two models, IDD and the scenario
deduction model of DBN, validating the likelihood and
wisdom in using these models in combating COVID-19
pandemic [34].

WHO assessed the R0 of COVID-19 and initially
predicted it as between 1.4 and 2.4. The forecast was
vital as it helped the governments to have an estimate
as well as manage the pandemic. The value for R0 can
be a decisive factor in how the strategies should be

implemented to address the pandemic while consid-
ering both the generation time (Tg) and R0 can finalize
the time existing to execute the appropriate control
strategies. In a comparative study on 12 research
findings conducted from 1st January to 7th February,
Liu et al. [35] projected an R0 value for COVID-19 in
the range of 1.5e6.68 [35], which exceeded the pre-
dictive value of WHO. The value of Re (effective
reproduction number) is defined as the average
number of secondary infections caused by an infected
individual, assuming that the population comprises
both susceptible and non-susceptible persons. Re will

fluctuate when people develop immunity either by
vaccination or immunity gained due to infection and
death [15].

As modeling is done with assumptions and set rules,
calculating uncertainty quantification is essential in in-
fectious modeling when reporting the results and
trustfully describing the limitations. Jensen et al. [36]
used the generalized Polynomial Chaos (gPC) frame-
work to propose the effect of total uncertainties in
compartmental epidemic models. This model can be

considered an improved version of the SIR model and
data for the modeling were obtained from two case
studies done in Denmark. The factors considered
included the assessment of the peak time of the
pandemic and the underlining forces between virus
Current Opinion in Environmental Science & Health 2022, 30:100399

www.sciencedirect.com/science/journal/24685844


Table 1

Summary of the selective COVID-19 modeling studies reported from different countries.

Country Aim of the work Simulation platform/model Parameters considered in modeling Findings Reference

Australia To estimate the impact of global air
travel limitations, patient
isolation, home confinement,
maintenance of physical
distancing and school
shutdowns

Agent-based modeling c1: Time to reach to the infectivity peak
c2: Recovery period
c3: Possibility of spread for asymptomatic/

presymptomatic agents
c4: Fraction of symptomatic cases
c5: Age

Combination of school shutdowns
together with physical distancing
resulted in significant control of
COVID-19. Further, the disease
could be controlled within 13–14
weeks by maintaining social
physical distance along with
case isolation and imposing
boundaries to global air travel.

[23]

China To recognize how national and
international travel restrictions
influence on spreading the
COVID-19

Global metapopulation disease
transmission model (GLEAM)

Latency period (mean)
Infectious period (mean)
Generation time (Tg)
Starting dates considered in an interval
Initial number of zoonotic cases

A notable reduction of case
introductions was observed at
the international level.

[24]

China To forecast the rise of COVID-19
epidemic and short term
spreading of the virus

Dynamics model of infectious diseases
and time series model (SEIQDR
model)

g: Cure rate
d: Fatality rate dqd: Quarantine intensity
did: Rate of highly infectious people in the

free environment transferred as
confirmed cases

d1: Rate of move out due to lack of timely
treatment

This model is effective for the
prediction of COVID-19 epidemic
transmission in short term.

[25]

China To study COVID-19 dynamics and
consequences of precautionary
actions

Susceptible, Un-quarantined infected,
Quarantined infected, Confirmed
infected (SUQC) model

a: Infection rate
ᵧ1: Quarantine rate
ᵧ2: Confirmation rate of quarantined

infected
s: Confirmation rate of those infected

confirmed with other tests
d: Confirmation rate of the un-quarantined

infected

Strict isolation and precautionary
actions are needed to control the
disease. Model is capable of
determining the progression of
disease and it could be utilized
for other high-risk countries.

[26]

Germany To develop COVID-19 prediction
tool in Germany

Susceptible–Exposed– Infected–
Recovered (SEIR) model

b: Infection rate
G: The rate to become infectious
d: The rate with which one dies or recovers

Modeled short-term COVID-19
predictions for some regions of
Germany. Accessibility was
offered to policymakers via web
applications.

[27]

India To predict the prevalence of the
COVID-19 disease

AutoRegressive Integrated Moving
Average (ARIMA), Seasonal
Autoregressive Integrated Moving
Average (SARIMA) and Prophet

ARIMA
Autoregressive (AR): Differencing &

moving-average (MA)
AR- (p); Impact of past values on Xt,

Xt=c + a1x t-1——+apx t-p+ εt t = 1,2, —T
MA- (q); Past errors as explanatory

variables
ARMA (p, q)-Time series data stationary
ARIMA (p, d, q)- generalized to non

-stationary time series with differencing

For the prediction of COVID-19
occurrence, new and for total
deaths, ARIMA & SARIMA can
be used. SARIMA is considered
better as it includes weather/
seasonal variations.
For the total number of cases
Prophet model yields better
accuracy

[28]
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SARIMA: (p, d, q) (P, D, Q) s Improvement
to ARIMA by considering seasonal
fluctuations

Prophet model: Used past data to predict
the future dt: Date of the day

x: Accumulated values of a country (India)
Italy To characterize dynamics and

predicting the future prevalence
A five-dimensional COVID-19

epidemic model
r: Rate of getting infected
a: Average rate of recovery & death
a: Lockdown rate of susceptible
m: Isolation rate of infectious

Developed an optimal control
model. Predictions were made
on the disease control time and
showed how effective imposing
restrictions on movement in
controlling the COVID-19
epidemic.

[29]

Sri Lanka To investigate COVID-19 dynamics
in Sri Lanka

SEIR model b: Exposed rate to the novel coronavirus
s: Infected rate
g: Recovery rate
g1: Recovery rate of patients who show

mild symptoms
g2: Recovery rate of severely ill patients

who are treated in ICUs
d: Rate at which a patient’s level becomes

critical

COVID-19 could be controlled by
strict control measures.

[30]

UK To forecast the fluctuations to
COVID-19 pandemic due to
nonpharmaceutical interferences

SIR model b: Infection rate
1/m: Average infectious period

Immediate lockdowns showed
significant control of COVID-19.

[31]

UK To study the effectiveness of two
impending lockdown release
approaches

SEIR model b: Transmission rate c: Effectiveness of
the self-isolation

m: Natural death rate
a: Death rate due to SARS-CoV-2
s: Incubation rate
g: Recovery rate and how long individuals

remain infectious

Removal of quarantine for the
whole community at once is a
high-risk approach in
comparison to the gradual re-
integration approach.

[32]

United States To investigate the COVID-19
transmission dynamics

A mathematical model based on
differential equations

L: Population influx rate
m: Natural death rate for the human hosts,
a −1: Incubation period p: Portion of

exposed individuals who become
severely ill and hospitalized after the
incubation period

q: Rate of infected individuals (who initially
show minor or moderate symptoms)
getting hospitalized due to the
worsening of their conditions

w: Disease induced death rate
s: Removal rate of the coronavirus from

the environment
g1, g2, g3: Rates of recovery
ε1, ε2, ε3: Rates of contributing the

coronavirus to the environment, from the
exposed, infected (non-hospitalized),
and hospitalized individuals,
respectively.

Environmental factors could
contribute to the spread of the
disease.

[33]

(continued on next page)
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transmission and travel banning or imposing partial re-
strictions. Their outputs displayed the efficacy and
practicability of the technique. Furthermore, the
importance of quantifying the uncertainties in infec-
tious modeling was highlighted [36].
Lessons from COVID-19 modeling
Modeling has been successful globally due to the
easiness of forecasting compared to laboratory exper-
iments. However, mathematical modeling and its
application in medicine, specifically in infectious
diseases, have to be performed precisely as outcomes
will be used in decision-making that will determine

the future of humanity. By applying infectious
modelling to COVID-19, the scientists learned the
challenges of using mathematical modeling on new or
emerging infectious disease outbreaks. If contagious
disease modeling is a reality in preventing future
pandemics, research alliances among developing and
developed nations are vital to overcoming the finan-
cial constraints and lack of resources in low-
income countries.

Challenges associated with the COVID-19 modeling
and associated uncertainties
A recent review of Menon and Mohapatra [37] sum-
marizes the role of environmental factors on the

transmission dynamics of the COVID-19 virus. It
further defines the importance of considering diverse
parameters when designing models to predict risk as-
sessments with a particular disease. In addition to
virus transmission, environmental parameters such as
temperature, humidity, and climatic changes could
significantly influence the virus genome, creating gene
mutations. Initially, and up to now, the virus’s nature
keeps changing. Its properties have changed, and
specific variants have become more virulent. Certain
variants have the genetic ability to change the

COVID-19 virus characteristics and are named Vari-
ants of Interest (VOIs). The variants such as Alpha,
Beta, Delta, and Gamma are called Variants of Concern
or VOCs. Omicron and the new sub-variant named
Deltacron have become more transmissible than
the rest.

The nature of the environment is a decisive factor in
host immunity and will vary from person to person.
Though COVID-19 is considered an airborne respiratory
virus, viral RNA as well as COVID-19 has been detected

in aquatic environments and also from fecal matter,
which is a global concern [38,39]. All these factors will
influence the R0 value. Therefore, modeling with a
globally unknown virus, and uncertainties associated
with all these diverse environmental and behavioral
factors of the global communities [40] are the main
challenges scientists faced in providing predictions to
control this global pandemic.
www.sciencedirect.com
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Drawbacks in COVID-19 infectious
modeling in disease predictions
As discussed in a recent review by Mohapatra and
Menon [40] one of the shortcomings was the failure to
identify the intermediate host, where the uncertainty
lies in whether it is a single species, or many involved.
Additionally, it has not yet been able to determine who
was the first patient that was infected with the SARS-
CoV-2 virus. It prevented forecasting the actual begin-
ning of the pandemic and most countries would have
been late in implementing their policy decisions [40].

The quality of data used in modeling is crucial, whether

the country is developed or still developing with mini-
mal resources. In COVID-19 disease containment, one
major drawback was the quality of input data used for
the predictions. Drew et al. [18] discussed that irre-
spective of the modeling complications, predictions on
forthcoming diseases of COVID-19, fatalities, and hos-
pital admissions are connected with substantial doubts
and how the output will change with the quality of data
used. The findings display the significant disparities in
the assessing skills or the knowledge gap among the ten
nations, demonstrating variations observed with the

forecasts made with individual modeling and how the
assumptions made for each parameter will change the
precision [18]. Also, whether the data indicate factual
status, the accuracy of the documented data for autho-
rized infected numbers, actual figures on recovery, and
the verified deaths due to COVID-19 either nationally
or globally will influence the accuracy of the fore-
casts [18].
Recommendations for future
To maintain the selected model’s repeatability and
unambiguity, it is vital to use open-access datasets.
Validation is essential for a model to be accepted.
However, when researchers are unable to authenticate
the process it is recommended to declare the causative
factors liberally [41]. Furthermore, uncertainties arising

from all the parameters must be considered when
models are used to predict an infectious disease. A
multidisciplinary approach with international research
collaborations with expertise in different fields needs to
be promoted in designing models for combating deadly
pandemics such as COVID-19.
Conclusion
Predicting solutions to natural disasters or global pan-
demics with mathematical equations is not an easy task.
Complications arise in modeling the emerging in-
fections due to the non-existent data for model param-
eterization, authentication, and complexity in the
methods used. Uncertainty quantification is indispens-
able in infectious modeling and the use of actual facts
will yield accurate forecasts which could be useful in
controlling a progression of a deadly pandemic.
www.sciencedirect.com
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