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Abstract

Geological uncertainty refers to the changeability of a geomaterial category embedded in another. It arises from predicting a geoma-
terial category at unobserved locations using categorical data from a site investigation (SI). In the design of bridge foundations, geolog-
ical uncertainty is often not considered because of the difficulties of assessing it using sparse borehole data, validating the quality of
predictions, and incorporating such uncertainties into pile foundation design. To overcome these problems, this study utilizes sparse
borehole data and proposes a hybrid approach of various spatial Markov Chain (spMC) models and Monte Carlo simulation to predict
three-dimensional (3D) geomaterial categories and assess geological uncertainties. The 3D analysis gives realistic and comprehensive
information about the site. Characteristics of the proposed hybrid approach include the estimation of transition rates, prediction of
3D geomaterial categories, and simulation of multiple realizations to propagate the uncertainties quantified by information entropy. This
proposed hybrid approach leads to specific novelties that include the development of optimal SI plans to reduce geological uncertainty
and the determination of geomaterial layer boundaries according to the quantified geological uncertainty. Reducing the geological uncer-
tainties and accurately determining spatial geomaterial boundaries will improve the design reliability and safety of bridge foundations.
The hybrid approach is applied to the Lodgepole Creek Bridge project site in Wyoming to demonstrate the application of the hybrid
approach and the associated novelties. Outcomes are cross-validated to evaluate the geomaterial prediction accuracy of the hybrid
approach.
� 2023 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The performance and reliability of geotechnical struc-
tures, like bridge foundations, are largely dependent on
supporting geomaterial categories and layers present at a
project site (Tran et al., 2018). Borehole exploration is a
common site investigation (SI) technique used to obtain
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geomaterial and subsurface information. However, it is
practically infeasible to collect observations across the
whole site with a borehole scheme, which leads to sparse
borehole data. This challenge is attributed to the limitation
of SI techniques, current SI practice, budget constraints,
and unforeseen problems during borehole drilling. Because
of these limitations, uncertainty is present at unobserved
locations concerning the geomaterial categories, transi-
tions, and combinations thereof. More formally, geological
uncertainty refers to the changeability due to one geomate-
rial layer entrenched in another or the introduction of por-
tions of different geomaterial categories within a
homogenous geomaterial mass (Qi et al., 2016). In contrast
to the inherent variability of the geomaterial properties,
geological uncertainty requires consideration during pile
design because the variability of geomaterial properties
across different geomaterial categories should be more dis-
tinct than the variability of geomaterial properties within
the same soil category (Oluwatuyi et al., 2022a, 2022b).

The concept of geological uncertainty is well known and
has been studied in the fields of geophysics (Lindsay et al.,
2012), hydrology (Elfeki, 2006; Refsgaard et al., 2012),
mining (Benndorf and Dimitrakopoulos, 2013; Montiel
et al., 2016), and petroleum engineering (Ampomah
et al., 2017). Spatial Markov Chains (spMC) have been
applied in these applications to simulate geological uncer-
tainty and solve geological problems. For example, the
optimization of pump-and-treat systems for the overall
pumping rates from the hydraulic barrier is obtained using
spMC to minimize geological uncertainty (Pedretti, 2020).
Multinomial Categorical Prediction (MCP) consistently
produced the highest prediction accuracy from the grab
samples data that are interpolated using algorithms from
spMC (Prospere et al., 2016). Gao et al. (2016) used a Mar-
kov chain transition probability method, like spMC, to
simulate spatial distributions converted to categorical dis-
tributions in the identification of a representative dataset
for long-term monitoring of the Weyburn CO2-injection
enhanced oil recovery site. However, this approach
required a large amount of borehole information (900
wells) to define transition rates and probabilities.

In the field of geotechnical engineering, the role of geo-
logical uncertainty in layered profiles is initially impossible
to study because of the sparse subsurface data available for
spatial correlation within the study site (de Marsily et al.,
2005). This limitation associated with sparse borehole data
creates challenges in geotechnical engineering designs and
construction. Although, modeling approaches have been
recently developed to accommodate sparse borehole data.
These approaches assume that the subsurface domain can
be characterized by the Markov property. This property
implies that the probability of any future state depends
only on the present state and not any past state (Grabski,
2014). For geostatistical applications, the states represent
the geomaterial categories and the time steps correspond
to the distance in space (Deng et al., 2017). The approaches
include the coupled Markov Chain (CMC) model (Deng
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et al., 2017; Elfeki and Dekking, 2007; Feng et al., 2018),
the Markov Random Field (MRF) model (Li and Zhang,
2010; Wang et al., 2019), and the Generalized Coupled
Markov Chain (GCMC) model (Deng et al., 2020; Park,
2010; Park et al., 2007). Each approach however possesses
limitations. For instance, the CMC model requires bore-
hole data at both sides (far left and right sides) of the 2D
study area, yields inaccurate predictions, and underesti-
mates geomaterial in small proportions (Elfeki and
Dekking, 2007; Park, 2010). Furthermore, the MRF model
requires long computational time, involves complex theory,
and is restricted to 2D analysis (Li et al., 2016). In addition,
the GCMC model has limited application for large-scale
geological simulation due to the difficulty in the direct esti-
mation of the horizontal transition probability matrices
(Deng et al., 2020).

Recognizing the limitations of the previous approaches
in accommodating sparse data, a hybrid approach that
involves the application of various spMC prediction mod-
els and Monte Carlo simulation to predict geomaterial cat-
egories is proposed in this study. The features of the hybrid
approach include the estimation of transition rates, predic-
tion of geomaterial categories at unobserved locations,
simulation of multiple realizations to propagate uncer-
tainty, and uncertainty quantification of subsurface stratig-
raphy using information entropy. To overcome the
limitation of analyzing sparse data in spMC, categorical
data from boreholes are reported for analysis at every thin
depth of 0.075 m of SI. Besides accommodating the sparse
borehole data, the proposed hybrid approach is more com-
putationally efficient and allows easy implementation and
reproduction in the open-source R program. As a result
of these advantages, it is possible to have flexibility in bore-
hole locations within the spatial study site, achieve accurate
estimation even in the presence of thin geomaterial layers,
and obtain computationally efficient extensions to 3D
applications (Feng et al., 2018). The 3D application will
give more realistic and comprehensive information about
the site.

This study proposes a hybrid approach needed for sys-
tematic 3D geomaterial profile modeling and geomaterial
layers determination with sparse borehole data through
analysis of geological uncertainty. The novelty in the
approach involves the development of an optimal SI plan
to reduce geological uncertainty and the determination of
geomaterial layer boundaries according to geological
uncertainty. The development of the optimum SI plan will
give engineers the ability to quantitatively communicate
and convince their clients of the need for an additional
borehole to improve the design and construction of foun-
dation systems. The determination of geomaterial bound-
aries using quantified geological uncertainty is an
important advancement. The true boundaries of a site will
be impossible to determine without drilling boreholes at
every location. The nonlinear spatial boundaries obtained
from the proposed hybrid approach will provide a better
alternative to the assumed two-dimensional (2D) linear
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interpolation method that may under or overestimate the
thickness of the different geomaterial categories. These spa-
tial boundaries also provide a means to combine geological
uncertainties with other forms of uncertainties to predict
geomaterial properties for the reliability-based limit state
design (Huffman et al., 2015). The methodology and anal-
yses presented in this study can be reproduced by engineers
for the design of bridge foundations and other geotechnical
structures at different site locations. The hybrid approach is
demonstrated using the Lodgepole Creek bridge project
site in Wyoming, and results are cross-validated to evaluate
model prediction accuracy.

The paper is organized as follows. First, the methodol-
ogy underlying the proposed hybrid approach is presented
to generate estimations, predictions, simulations, and
uncertainty measures. Next, a case study is described to
illustrate the 3D analysis with the hybrid approach. Then,
the results from the 3D analysis for the bridge project site
are presented in subsequent discussions. Finally, conclu-
sions and recommendations are provided.

2. Methodology

2.1. Background

The methodology in this section describes the proposed
hybrid approach which uses various spMC models and
Monte Carlo simulation to estimate, predict, and simulate
the categorical geomaterials at unobserved locations of the
site. The models are fit using the spMC package (Sartore,
2019, 2013; Sartore et al., 2016) in the R program (R
Core Team, 2016). Monte Carlo simulation is also inte-
grated into the package. This package ‘‘provides several
functions to deal with categorical spatial data and contin-
uous lag Markov Chains” (Sartore et al., 2016). This pack-
age has the following advantages (i) it is implemented in the
open-source program of R so that it is widely available to
practitioners, (ii) it has high-performance computational
(HPC) techniques to aid in computational efficiency, and
(iii) it uses recent advances for conducting simulations.
The required inputs for analysis include a vector of cate-
gorical data (primary data) obtained from the boreholes
and the respective 3D location coordinates of the boreholes
(Sartore, 2019). A brief overview of the terminology, equa-
tions, and procedures for the proposed hybrid approach
are provided here to outline the necessary background
for the paper. To resolve the issue of sparse data required
to define transition rates, the data from the boreholes are
reported at a depth of 0.075 m. The transition rate matrices
are computed as described in the next section.

2.2. Estimation of transition rate matrices

Consider a spatial location s and let Z sð Þ denote the cat-
egorical random variable for the state or geomaterial at
that location. In geostatistics, measurements of Z are avail-
3

able at observed locations and predictions of Z are required
at unobserved locations. Thus, Z sð Þ forms a random field
across all locations s within a study site (Bivand et al.,
2013). Now, consider two locations s and sþ hwhere h is
the multidimensional lag and khk denotes the Euclidean
distance between s and sþ h (Sartore et al., 2016). The
transition probability tij hð Þ of going from categorical state
zi to categorical state zj is

tij hð Þ ¼ Pr Z sþ hð Þ ¼ zj Z sð Þ ¼ zij� � ð1Þ
where i; j ¼ 1; 2; � � � ; nS , and nS is the number of states. The
collection of transition probabilities tij hð Þ in Equation (1)
across all i; jis given by the nS � nS transition probability
matrix, T hð Þ as
T hð Þ ¼ exp khkRhÞð ð2Þ
where Rh is the transition rate matrix which depends on the
direction given by the lag h(Sartore et al., 2016). The tran-
sition rate illustrates the immediate rate at which the Mar-
kov chain transitions between geomaterial categories.
These transition rates help understand the subsurface
stratigraphy and in obtaining the corresponding predic-
tions for a site.

Carle and Fogg (1997) propose an approximation to
express the transition rate matrix Rh (Rek Þin Equation (2) as

Rek ¼ diag fL�i;ekg
� ��1

Fek � Ið Þ ð3Þ

where k ¼ 1; 2; � � � ; d for d dimensions, ekis the standard

basis vector for the direction indexed by k, L
�
i;ek is the mean

stratum thicknesses of state i along the direction ek, diag

denotes a diagonal matrix with entries L
�
i;ek , and Fek is the

transition probability matrix consisting of probabilities
for consecutive elements with the same geomaterial cate-
gory along the direction ek (Sartore et al., 2016). The tran-
sition rate (rij;h) in row i and column j of the transition rate
matrix Rh in Equation (2) is calculated as

rij;h
�� �� ¼ Xd

k¼1

hk
khk rij;ek
� �2

" #1=2
ð4Þ

where rij;ek denotes row i and column j of Rek in Equation
(3), rij;h is non-positive when i ¼ j, and rij;h is non-negative
when i–j (Sartore et al., 2016). The components rij;ek in
Equation (4) can be estimated using the Maximum Entropy
(ME) method, which estimates the components of Fek by
plugging in f �

ij;ek
into Equation (3) upon convergence of

the following iterative algorithm.

1. Initialize f i;ek ¼ pi
L
�
i;ek

for i ¼ 1; 2; ::; nS .

2. Compute f �
ij;ek

¼ f i;ek f j;ek for ; j ¼ 1; 2; ::; nS .

3. Compute f i;ek ¼
pi
PnS

s¼1

PnS
j–s

f �sj;ek
L
�
i;ek

PnS
j–i

f �ij;ek
.

4. Repeat steps 2 and 3 until convergence.
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where pi is the proportion in state i (Sartore, 2013;
Sartore et al., 2016).

2.3. Subsurface prediction

Geological modeling is conducted to predict subsurface
characteristics or geomaterial categories at an unobserved
location ðs0Þ using the categorical data from a site
ðsl; l ¼ 1; � � � ; nÞ.

For prediction, the conditional probability of interest
involves the unknown location and the combination of
the data rather than just the two locations as in Equation
(1). The conditional probability of interest is then given by

qj s0ð Þ ¼ Pr Z s0ð Þ ¼ zj
\n
l¼1

Z slð Þ ¼ z slð Þ
�����

 !
ð5Þ

where z slð Þ is the value of the random variable Z slð Þat the
observed location sl (Sartore et al., 2016).

To predict geomaterial category j at an unobserved
location (s0), an approximation of the conditional proba-
bility in Equation (5) is needed. Various algorithms can
be considered for the approximation, namely Kriging, Path
Algorithms, and Multinomial Categorical Prediction
(Sartore et al., 2016). The Fixed and Random Path Algo-
rithms (Li, 2007; Li and Zhang, 2007) are not pursued in
this study due to concerns that these methods are not cor-
rectly implemented in the spMC package (Li and Zhang,
2015).

The Kriging methods are subdivided into Indicator
Kriging (IK) and Indicator CoKriging (CK). Data in
geotechnical engineering are sorted based on their acquisi-
tion and usage into borehole data, geological mapping
data, and property data (Zhang and Zhu, 2018). In this
study, Kriging is targeted solely at the borehole data as
the primary data which includes the vector of geomaterial
categories present in the borehole and its 3D location coor-
dinates. The two Kriging methods IK and CK employed in
this study are for comparison purposes with respect to this
primary data. For both Kriging methods, the conditional
probability in Equation (5) is approximated using the
weighted linear combination given by

qj s0ð Þ �
Xn
l¼1

XnS
i¼1

wij;lcil ð6Þ

where cil is an indicator function based on the transition
probability estimated in Section 2.2 taking the value 1
when z slð Þ ¼ zi and 0 otherwise, and wij;l are the weights
(Zhang and Zhu, 2018). Using the nS � nS transition prob-
ability matrix in Equation (2), the weights can be found
using a system of equations given by

T sl � slð Þ � � � T sn � slð Þ
..
. ..

. ..
.

T sl � snð Þ � � � T sn � snð Þ

2
664

3
775

W l

..

.

Wn

2
664

3
775 ¼

T s0 � slð Þ
..
.

T s0 � snð Þ

2
664

3
775
ð7Þ
4

where the nS � nSmatrix W l has ði; jÞ entry wij;l for obser-
vation with index l and T sl � snð Þrepresents the transition
rate matrix in Equation (2) from the location sl to location
sn. Unbiased constraints are placed on the weights in which
IK uses the weights in Equation (8) and CK uses the
weights in Equation (9)

Xn
l¼1

wij;l ¼ 1 ð8Þ

Xn
l¼1

W l ¼ I ð9Þ

where I in Equation (9) is the nS � nSidentity matrix
(Carle and Fogg, 1996; Myers, 1982). While in theory,
CK should be the best algorithm for estimating conditional
probabilities, CK may not provide a more accurate estima-
tion than other procedures for categorical-based data
(Allard et al., 2011; Goovaerts, 1994).

The Multinomial Categorical Prediction (MCP) method
initially proposed by Bogaert (2002), and improved by
Allard et al. (2011), is based on the Bayesian maximum
entropy where the conditional probability in Equation (5)
is approximated using

qj s0ð Þ � pi
Qn

l¼1tikl s0 � slð ÞPnS
i¼1pi

Qn
l¼1tikl s0 � slð Þ ð10Þ

where pi is the proportion in category i and tikl s0 � slð Þrep-
resents the transition probability as defined in Equation (1)
from the state zi to state zk for observation with index l
(Sartore et al., 2016). Allard et al. (2011) indicate that the
MCP method can reproduce complex and asymmetrical
patterns.

Predictions can be obtained based on the approxima-
tions of the conditional probabilities for all geomaterial
categories in the gridded elements of the random field.
The predicted geomaterial category for the spatial location
corresponds to that category with the highest conditional
probability. It is possible to use all the data or only nN of
the nearest neighbors in the approximations in Equations
(6) and (10) to aid in the computational efficiency. Compu-
tational efficiency is especially important when it comes to
the simulation process. Thus, this study uses the recom-
mended default of 12 nearest neighbors (Sartore et al.,
2016).
2.4. Subsurface simulation

Monte Carlo simulation is performed by repeating the
CK, IK, and MCP methods nM times to approximate the
conditional probabilities, qj s0ð Þ in Equation (5) (Wang

and Cao 2013). The number of simulations ðnMÞ is deter-
mined through a sensitivity analysis. These simulations
are needed to propagate the uncertainty in the predictions
as the predicted geomaterial categories can vary at the
unobserved spatial locations. The multiple simulated con-
ditional probabilities are evaluated and used in the quan-
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tification of uncertainty. The proposed hybrid approach is
probabilistic such that uncertainties in the conditional
probability values are quantified using information entropy
which is described in the next section.

2.5. Information entropy

To quantify the geological uncertainty on the subsurface
predictions, randomized realizations are generated through
simulation. The simulation is conducted by random selec-
tion of a category or state according to the approximated
probability in Equation (5). The uncertainty calculation
is then based on information entropy across the
simulations.

Information entropy is a quantitative way of describing
the associated geological uncertainty in a subsurface pre-
diction. The general form for information entropy is given
by

H ¼ �
Xns

j¼1
pjlognspj ð11Þ

where pj is the conditional probability of category j for

j ¼ 1; 2; � � � ; ns (Wellmann and Regenauer-Lieb, 2012).
Recall that in section 2.2 nS has earlier been described as
the number of geomaterial states or categories. The mini-
mum of H is 0 when ph ¼ 1 and pj ¼ 0 for all j–h using

the convention logns1 ¼ 0. The maximum of H is

lognsns ¼ 1. Thus, the information entropy is low (low

uncertainty) when one pj is near 1 and is high (high uncer-

tainty) when the pj are close to equal in value across the

geomaterial categories.
The information entropy in Equation (11) needs to be

modified for this application. That is, H is calculated at a
gridded spatial location s0 using an approximation of the
conditional probability qj;m s0ð Þ in Equation (5) for one sim-

ulation indexed by m out of the multiple simulations nM .
The corresponding equation is given by

Hmðs0Þ ¼ �
Xns

j¼1
qj;m s0ð Þlognsqj;m s0ð Þ ð12Þ

The location mean information entropy, H
�

s0ð Þ, is
obtained at a gridded spatial location by averaging the
information entropy values in Equation (12) across the
nM simulations. Overall mean information entropy is

obtained across the site, by averaging H
�

s0ð Þ across all the
spatial locations in the site to give H

��
.

2.6. Validation

Validation is the process by which the accuracy of the
predictions obtained from a model, such as from a given
spMC model, is evaluated on a new set of data (Kutner
et al., 2004). True 3D ground information describing the
geomaterial profile throughout the study site is not avail-
able in actual geotechnical investigations. Cross-
5

validation is a viable alternative that can be used to assess
prediction performance when true ground information is
unavailable (Kutner et al, 2004). Cross-validation is effec-
tive for this purpose because (1) model fitting is conducted
on training data without the use of the testing data, (2)
model evaluation is based on the testing data only, thereby
treating such data as unseen by the model fitting process,
(3) the process is repeated throughout all testing datasets
(folds) which allows for ground truthing evaluation inde-
pendent of the model fitting process. The three methods,
namely IK, CK, and MCP, for predicting the geomaterial
category from the spMC model are compared in this study.
The objective of cross-validation for this study is to deter-
mine which of the methods is most effective and accurate in
geomaterial prediction. Validation of the model can pro-
vide insights into the practical viability of the resulting pre-
dictions. However, the assessment of geological uncertainty
is site-specific, so using data from another site would be
inappropriate. Thus, the validation process in this study
involves k-fold cross-validation, which is a commonly used
technique when validation data is neither practical nor
available (Kutner et al., 2004).

With k-fold cross-validation, CV(k), the data in one part
of the fold forms the validation data, the remaining data
forms the training data, and this process is repeated across
the k folds (James et al., 2015). Usually, the folds are ran-
domly selected. However, in this application, it makes
more sense to use the data in each borehole as a fold. Thus,
the data for a particular borehole, known as the validation
data, is removed from the overall dataset, known as the
training data, in order to generate predictions from the
spMC model. The observed geomaterial categories for
the validation data are compared to the predicted geomate-
rial categories obtained from the predictions based on the
training data. The percentage match is computed for each
validation dataset or borehole to obtain a cross-
validation index. This percentage match is calculated for
each simulation and then averaged across the simulations
to obtain the mean percentage match.

The proposed hybrid approach described in this section
is applied to an actual case study as described in the next
section. It is important to realize that a major advantage
of the proposed hybrid approach is its generalizability to
any site, which has available information on the categorical
states consisting of the geomaterials along with the respec-
tive 3D location coordinates. With this information, it is
possible to carry out a complete and thorough analysis of
geological uncertainty. A workflow of the methodology
used in this paper is shown in Fig. 1 to aid in the implemen-
tation of the proposed hybrid approach. The key steps
involve assigning data to the discretized (gridded) elements,
simulating the predictive surface with the estimated transi-
tion rates, multiple simulations using Monte Carlo simula-
tion, quantifying the geological uncertainty using the
information entropy, and performing the above validation
procedure.



Fig. 1. Flowchart showing the geological profile modeling and uncertainty quantification using the proposed hybrid approach.

Fig. 2. Aerial view of borehole layout (red rectangular lines indicate the
study area) (Ng et al., 2023).
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3. Case study

The case study consists of an actual project to replace an
existing five-span bridge founded on a reinforced concrete
pile over Lodgepole Creek. The area of construction is sit-
uated within Pine Bluffs to Albin, North Section, WY 215,
Laramie County, Wyoming, USA. A foundation investiga-
tion report by the Wyoming Department of Transportation
(WYDOT) consists of six boreholes shown in Fig. 2. The
arrows pointing to each borehole (BH) in Fig. 2 show the
position and ground elevation of the boreholes. The
ground surface elevation, groundwater-surface, and geo-
logical profile as estimated by the engineering geologist
are shown in Fig. 3. Altogether six boreholes are plotted
in Fig. 4 to form the data to be analyzed for this study.
Four geomaterial strata are identified on the project site
through the drilled boreholes. The overburden soils consist
of a mixture of sand with silt and gravel, sand, and silt, all
underlain by an intermediate geomaterial (IGM) layer of
sandy siltstone. An American Association of State High-
way and Transport Officials (AASHTO) and Unified Soil
Classification System (USCS) classification of the identified
geomaterial strata is presented in Table 1. The random field
covers the project site of + 60 m in the longitudinal dis-
tance, +30 m in the transverse distance, and �30 m deep.
Negative values are used for describing depth below the
ground surface.
6



Fig. 3. Projected x-z section view of the borehole layout (Ng et al., 2023).

Fig. 4. 3D view of the borehole layout (Ng et al., 2023).

Table 1
Geomaterial classification.

Geomaterial label AASHTO
classification

USCS*
classification

Sand with silt and gravel A-1-b to A-2–4(0) GM, SP-SM
Sand A-1-b to A-2–7(0) SW, SM
Silt A-4(0) ML
Sandy siltstone* A-5(11) ML

AASHTO-American Association of State Highway and Transportation
Officials; USCS-Unified Soil Classification System; and Soil classification
is on cuttings from the geomaterial.

O.E. Oluwatuyi et al. Soils and Foundations 63 (2023) 101269
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4. Results

4.1. Estimation of transition rate matrices

The estimated transition rate matrices in 3D for the
borehole data are presented in Table 2 to provide an under-
standing of the subsurface stratigraphy of the site. The
transition rate of a geomaterial category to itself is a nega-
tive value so that the rows of the transition rate matrix sum
to zero. For example, the estimated transition rate of sandy
siltstone to itself in the transverse direction is �0.0703. The
passage intensity (transition rate magnitude of a geomate-
rial to itself) is always higher than the transition intensity
(transition rate magnitude of a geomaterial to another).
For example, the estimated transition rate of sandy silt-
stone to itself in the transverse direction (0.0703) is higher
in magnitude than that of sandy siltstone to silt (0.0403).
The estimated transition rates with positive values in the
longitudinal (x-axis) distance are smaller in magnitude
because of their longer length (+60 m) when compared to
the rates in the depth (z-axis) and transverse (y-axis) direc-
tion (30 m). The proportions of the geomaterial categories
as reflected by the borehole data are also estimated along-
side the transition rate matrices. These proportions are
0.1626, 0.3952, 0.1944, and 0.2478 for sand with silt and
gravel, sand, silt, and sandy siltstone, respectively. From
the estimation transition rate, a conditional transitional
probability between 0 and 1 is then generated using the
IK, CK, and MCP methods for each geomaterial category



Table 2
3D estimated transition rate matrices obtained using the maximum entropy method (Ng et al., 2023).

X-direction estimated transition rate matrix

Geomaterial category Sand with silt and gravel Sand Silt Sandy siltstone

Sand with silt and gravel �0.0087 0.0040 0.0022 0.0025
Sand 0.0032 �0.0106 0.0034 0.0040
Silt 0.0020 0.0039 �0.0084 0.0025
Sandy siltstone 0.0021 0.0041 0.0023 �0.0085
Y-direction estimated transition rate matrix
Geomaterial category Sand with silt and gravel Sand Silt Sandy siltstone
Sand with silt and gravel �0.0876 0.0194 0.0491 0.0191
Sand 0.0091 �0.0455 0.0262 0.0102
Silt 0.1179 0.1342 �0.3840 0.1319
Sandy siltstone 0.0140 0.0160 0.0403 �0.0703
Z-direction estimated transition rate matrix
Geomaterial category Sand with silt and gravel Sand Silt Sandy siltstone
Sand with silt and gravel �0.0781 0.0320 0.0211 0.0250
Sand 0.0148 �0.0386 0.0109 0.0129
Silt 0.0131 0.0147 �0.0392 0.0114
Sandy siltstone 0.0143 0.0161 0.0106 �0.0410
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at each gridded location. To illustrate the geomaterial cat-
egory prediction, the probabilistic parameter (i.e., the high-
est conditional probability at every gridded location of the
random field) as shown in Fig. 5 is selected to obtain the
most probable geomaterial category prediction. Imagine a
gridded location on the random field after the analysis,
the conditional probabilities of having sand with silt and
gravel, sand, silt, and sandy siltstone at a such gridded
location are estimated at 0.10, 0.25, 0.55, and 0.10 respec-
tively. The 0.55 probability value will be plotted for this
gridded location in Fig. 5. The algorithm will thereafter
choose ‘silt’ as the predicted geomaterial category for that
gridded location because it has the highest probability of
occurring at that location.

4.2. Subsurface stratigraphy predictions and uncertainty

quantification

One hundred simulations of the most probable geomate-
rial category prediction for the subsurface are generated
using the IK, CK, and MCP methods. Each simulation
produces predicted geomaterial categories across the 3D
study region based on the available borehole data. The
100 simulations are averaged and its geomaterial predic-
tions for IK, CK, and MCP are shown in Fig. 6. The figure
shows that for the overburdened soil, which is at the upper-
most part of the subsurface, sand with silt & gravel is
mostly predicted followed closely by sand, and silt. At
the lower depth, which is the bedrock, the predicted geo-
material is sandy siltstone. The averaged value from the
simulations illustrates the similarity between the IK and
CK methods. It also illustrates the asymmetry captured
by the MCP method, particularly for the Silt layer. The
estimated mean thickness of each geomaterial layer in the
MCP predicted subsurface is 3.84 m for sand with silt
and gravel, 7.77 m for sand, 7.65 m for silt, and 7.31 m
for sandy siltstone.
8

Several simulations are needed to propagate the uncer-
tainty in the predictions as the predicted geomaterial cate-
gories can vary at the unobserved spatial locations. A
sensitivity analysis is first conducted to study the effect of
the number of simulations on the standard deviation of
the overall mean information entropy. Fig. 7 shows a plot
of standard deviation with 10, 50, 100, 200, and 500 simu-
lations using MCP. This figure shows a dramatic reduction
in the standard deviation at 100 simulations with only a
small reduction (less than 1 %) after 100 simulations. Thus,
100 simulations appear to be adequate in this study as
additional simulations do not appear to justify the addi-
tional computational time. Models, like CMC and MRF
(earlier described in the introduction section), require more
simulation samples (more than 10,000) to converge. The
proposed hybrid approach, consisting of spMC and
MCS, does not require as many simulations.

An information entropy map can be produced by plot-
ting the location mean information entropy at the location

s0 as given by H
�

s0ð Þ. Fig. 8 displays this map for the CK,
IK, and MCP methods. The color bar labels on the right-
hand side of the figures represent the uncertainty quantified
at each element. It should be noted that there is more
uncertainty associated with CK and IK than with MCP
as is evident from the figures with the intensity of the yel-
low to red colors in CK and IK compared to MCP. The
overall mean information entropies are 0.196 for CK,
0.200 for IK, and 0.014 for MCP.

4.3. Validation of simulated subsurface predictions

As discussed in Section 2.6, k-fold cross-validation is
used to evaluate the prediction accuracy of the simulation
approaches for the spMC model. In this study, only six
boreholes are used, because data from boreholes for
geotechnical site investigation is costly and difficult to
obtain. Nevertheless, the proposed hybrid approach is well



Fig. 5. Highest conditional probability at grid positions on the randomfield
as estimated by the (a) IK, (b) CK, and (c) MCP methods (Ng et al., 2023).

Fig. 6. Geomaterial categories as predicted by (a) IK, (b) CK, and (c)
MCP (Ng et al., 2023).
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suited for modeling such sparse borehole data. The given
borehole data provide enough information to estimate
the transition matrix in the horizontal direction. The relia-



Fig. 7. Sensitivity analysis on the number of simulations with MCP based
upon the standard deviation of the overall mean information entropy (Ng
et al., 2023).

Fig. 8. Map of the location mean information entropy using (a) IK, (b)
CK, and (c) MCP (Ng et al., 2023).
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bility of the comparison among the three methods is eval-
uated through the process of cross-validation and the
results are compared with another related study. The mean
percentage match for the boreholes across the simulations
is evaluated for the different methods IK, CK, and MCP.
The results are shown in Table 3.

The mean percentage match for BHs 1 and 2 is poor
with less than 41 % match. Notice that these two boreholes
are quite close together as shown in Figs. 2 – 4. Despite
their proximity, there is quite a discrepancy between the
observed thicknesses of the sand layer and the sand with
silt and gravel layer. In addition, BH2 has a small depth
and lacks observed information on the remaining two lay-
ers (silt and sandy siltstone). The rest of the boreholes have
a high mean percentage match, with marginal percentage
matching for BH5. The cross-validation index value indi-
cates that MCP appears to be the best predictive simulation
algorithm with a mean percentage match of 65 % across all
boreholes. The higher prediction accuracy in MCP over
CK and IK is attributed to less uncertainty associated with
the MCP method. In a previous study by Prospere et al.
(2016), interpolation methods from spMC are used in the
substrate mapping of three rivers in Jamaica namely Gayle,
Black, and Salt Springs Rivers. For all three rivers, accu-
racy assessments on the prediction methods revealed the
most accurate predictions are made consistently by the
MCP method, which is in line with the present study. Mean
prediction accuracies obtained from using the MCP
method are 70.3 ± 9.2 %, 65.8 ± 10.4 %, and 63.0 ± 10.3
% for Gayle, Black, and Salt Springs Rivers, respectively
(Prospere et al., 2016). For this study, an MCP geomaterial
category prediction at an unobserved location within the
study area has a 65 % mean prediction accuracy. This
degree of accuracy is especially encouraging considering
the sparse amount of borehole data, which is even more
severe under the cross-validation scheme in which a partic-
10
ular borehole is removed. Oluwatuyi et al. (2022b) also
showed that the MCP method tended to perform better
than the IK and CK methods at predicting the observed



Table 3
Summary of the cross-validation process (Ng et al., 2023).

Borehole number and location (x and y
coordinates in parenthesis)

Percentage match

BH1
(37,25)

BH2
(40,25)

BH3
(112,90)

BH4
(168,85)

BH5
(177,55.5)

BH6
(178,42.5)

Mean Across
Boreholes

spMC Model method IK 19.56 40.62 61.29 67.82 49.12 70.59 51.50
CK 20.65 37.50 61.29 70.11 49.12 70.59 51.54
MCP 30.43 40.62 88.06 96.55 57.37 77.64 65.11

Borehole length (m) 27.60 8.40 27.90 28.50 15.60 10.20 NA

BH1-Borehole with number and location; NA-Not applicable.
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borehole information. Thus, the MCP algorithm is recom-
mended and used exclusively in the rest of the study.

The computational efficiency of the different simulation
algorithms in spMC has been studied and evaluated by
Sartore et al., (2016). While the run times of the hybrid
approach used are not recorded in this study due to numer-
ous subsequent calculations, this study can confirm that
based on its study site and primary data, MCP is more
computationally efficient than IK and CK.

4.4. Site investigation plans to reduce geological uncertainty

For this study site, the foundation locations are the
north abutment (N. ABUT.), the south abutment (S.
ABUT.), and the center pier (C. PIER.). The sum of the

location mean entropy, H
�

s0ð Þ, is taken across locations
s0along the geomaterial depth (z) of a similar geomaterial
layer for a given longitudinal and transverse (x,y) direction
(plan view). The sum of the location mean entropies for
each layer are mapped in Fig. 9 showing the areas around
the bridge pile foundation. It should be noted that the
mean information entropy values estimated in each of the
four geomaterial layers, namely sand with silt and gravel,
sand, silt, and sandy siltstone are 0.006, 0.017, 0.025, and
0.008, respectively. The mean information entropy for silt
is the highest, which may be due to the thinness of the layer
and the low number of gridded elements. The mean of
these four values equals 0.014, which is the same as the
overall mean information entropy of the whole site for
MCP as shown in Fig. 8(c).

The design of various borehole layout schemes is done
in the SI phase. Recall, that the original layout scheme is
based upon six boreholes with (x,y) coordinates given in
Table 3. Variations of the original layout scheme are con-
sidered in this study to demonstrate the importance of
borehole location and to illustrate how to obtain an opti-
mal SI plan. Table 4 shows these variations where the bore-
hole scheme identification represents the number of
boreholes. The original borehole scheme corresponds to
scheme 6 in Table 4. Boreholes marked with ‘‘X” are the
exact boreholes from the original layout with their coordi-
nates listed in the column heading. Boreholes marked with
”RBH” are recommended boreholes as alternatives to the
original layout scheme. The purpose of the recommended
RBH boreholes is to demonstrate the importance of strate-
11
gic borehole location in reducing geological uncertainties
as measured by entropy. The boreholes associated with
RBH are recommended at these locations, which are differ-
ent from the original locations, to reduce the geological
uncertainty associated with a site investigation plan. For
comparable analysis of the different borehole schemes, it
is assumed all boreholes are drilled to the full 30 m depth
(z) in the study site.

It is possible to evaluate these schemes in terms of geo-
logical uncertainty, as measured by information entropy,
for all geomaterials or a particular geomaterial of interest.
In this study, evaluation and reduction of uncertainty are
specified to the sandy siltstone because most H-piles used
in bridge construction at the study site are end-bearing
piles. Reduction of whichever measure of geological uncer-
tainty can be accomplished with the addition of boreholes
at the subsurface (x,y) locations with the highest values of
information entropy. For example, consider borehole
scheme 6v as an alternative to borehole scheme 6. Two rec-
ommended boreholes ‘RBH20 and ‘RBH60 are added as
alternative replacements to BH2 and BH6 in the original
design. The locations of RBH2 and RBH6 are determined
by the (x,y) coordinates that have the highest total location
mean entropy in sandy siltstone. These coordinates are
marked with a red square in the upper right (RBH2) and
lower right (RBH6) of Fig. 9 (d). The overall mean infor-
mation entropies of the various borehole schemes are dis-
played in Fig. 10. Thus, the geological uncertainty for the
original borehole scheme 6 is 0.011 and drops to 0.006
using borehole scheme 6v. Generally, the geological uncer-
tainty of a site can be reduced with the addition of more
boreholes. However, borehole location also is important
as demonstrated in the comparison between schemes 6
and 6v. From Fig. 10, the overall mean information
entropy using borehole scheme 4 is 0.007, which increases
to 0.01 with the additional borehole in scheme 5a. With
the repositioning of the additional borehole in scheme 5b,
the overall mean information entropy is at 0.007, which
is the same as that of scheme 4. In fact, scheme 4 has lower
overall mean information entropy than both scheme 5a and
scheme 6. While borehole scheme 6v has the smallest over-
all mean information entropy, the SI plan offered a mini-
mal improvement over borehole scheme 4 and scheme 5b.

In convincing the client of the need for an additional
recommended borehole, Figs. 9 and 10 with Table 4 could



Fig. 9. Cross-section (x,y) for each geomaterial layer: (a) sand with silt & gravel, (b) sand, (c) silt, and (d) sandy siltstone using MCP to display the sum of
the location mean entropy across the depths (z) (Ng et al., 2023).

Table 4
Borehole schemes to assess uncertainty reduction (Ng et al., 2023).

Borehole scheme Borehole number and location (x,y) coordinates in parenthesis

BH1 (11.1,7.5) BH2 (12,7.5) BH3 (33.6,27) BH4 (50.4,25.5) BH5 (53.1,16.65) BH6 (53.4,12.75)

4 X X X X
5a X X X X X
5b X X X X X
6 X X X X X X
6v X RBH2 (60,30) X X X RBH6 (60,3)

BH - Borehole with number and location; RBH - Recommended borehole with number and location; X - Borehole present.
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be used as possible communication tools. The possible way
to know the geomaterials at these locations with high
uncertainties and in turn reduce the geological uncertainty
is to recommend boreholes at these locations.

4.5. Boundary description of geomaterial layers

The characterization of geomaterial layer boundaries is
critical to the design of an adequate deep foundation sys-
tem. In this section, the spatial boundaries between the dif-
ferent geomaterial layers are estimated. The conventional
practice, apart from the local geological experience of the
project site, is to determine the boundaries through linear
interpolation of observed geomaterials from well-spaced
boreholes in 2D. This linear interpolation method consid-
ers the site-specific geological history as estimated by an
experienced engineer or geologist (Fig. 3). However,
boundaries can also be evaluated as the interface positions
12
that have high mean information entropy values in 2D (Shi
and Wang 2021). This study expands the estimation of the
boundaries throughout the study area in both 2D and 3D
to avoid crude approximations and assumptions associated
with linear interpolation. The proposed hybrid approach
will identify nonlinear boundaries separating geomaterials
and better describe the true subsurface stratigraphy for
the study site.

To give an initial description of the boundaries between
geomaterial layers in the surface area, two-dimension (2D)
images in the longitudinal and transverse axes are dis-
played in Fig. 11. Boundaries obtained from tracing grid-
ded spatial positions with high location mean
information entropy are displayed with the black bold line
while those from the linear interpolated method are dis-
played with the black dashed line. The boundaries have a
continuous bold line in the longitudinal direction with
one geomaterial category placed on another. In the trans-



Fig. 10. Overall mean information entropy for various borehole layout
schemes (Ng et al., 2023).

Fig. 12. 3D boundary descriptions for geomaterials and 16.8 m pile
penetration (Ng et al., 2023).
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verse direction, however, the sand and siltstone layers seem
to be the only geomaterials spanning throughout the length
of this direction. There are noticeable differences in the
boundaries obtained from both the proposed and linear
interpolated methods. For example, the boundaries
between the sand layer and the sand with silt and gravel
in the longitudinal direction had a difference ranging from
0.3 to 3 m as shown in Fig. 11(a). Such differences could
lead to a biased prediction of geomaterial properties,
expected pile penetration length, and pile resistance
estimation.

A 3D boundary description showing the geomaterial
layers with a H-pile driven to a penetration depth of
16.8 m is shown in Fig. 12. The linear interpolation method
considering site-specific geological history which is the cur-
rent practice is restricted to 2D. It is nearly impossible to
determine the layer boundaries of sparse data with linear
interpolation in 3D. The 3D image gives a vivid and realis-
Fig. 11. 2D boundary descriptions for geomaterials in the (a) longi

13
tic arrangement of the different geomaterial layers, unlike
the 2D image provided the geological profile is accurately
predicted. For example, the sand layer did not span
throughout the surface area of the spatial study site in
3D (Fig. 12) unlike how it did throughout the length of
the 2D longitudinal and transverse direction (Fig. 11).
The estimated thickness of each geomaterial layer on the
shaft of the 16.8 m driven pile is 4.5 m, 9 m, and 3.3 m
for sand with silt and gravel, sand, and sandy siltstone,
respectively. These geomaterial layer depths are important
for the reliable design of pile foundations. Table 5 presents
the results comparing geomaterial layer thickness for a
tudinal direction and (b) transverse direction (Ng et al., 2023).



Table 5
Geomaterial layers depth for a 16.8 m pile penetration as determined from the boundaries (Ng et al., 2023).

Boundary determination method Geomaterial layer thickness (m)

Sand with Silt and Gravel Sand Silt Sandy Siltstone

2D linear interpolation 3.9 10.2 2.4 0.3
2D proposed hybrid 4.5 12 0 0.3
3D proposed hybrid 4.5 9 0 3.3
Closest borehole to the pile 4.5 10.8 0 1.5
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16.8 m pile penetration as determined from the boundary
layers using the 2D and 3D proposed hybrid approach
and the 2D restricted linear interpolation method consider-
ing site-specific geological history. The results showed dis-
crepancies in the different methods of estimating the depth
of the geomaterial layer along the driven pile from the head
to the toe. There is no borehole at the exact position of the
driven pile to validate the results. However, extensive scru-
tiny of Fig. 11(a) showed silt to be absent in the geomate-
rial layers revealed by the closest borehole to the pile. A
similar pattern is shown in the geomaterial layers revealed
by the proposed hybrid approach (Table 5). Hence, the
proposed hybrid approach of using spatial boundaries to
determine geomaterial layers is an alternative recommen-
dation for practice.
5. Conclusions

The geomaterial subsurface stratigraphy can play an
important role in the design of reliable pile foundations,
particularly in an IGM, which has variable characteristics
and properties. The paper presents an innovative and
comprehensive hybrid approach for quantifying the
uncertainty associated with modeling geomaterial subsur-
face profiles from a site investigation. The approach
includes the estimation, simulation, and reduction of geo-
logical uncertainty as well as the determination of the
geomaterial layer boundaries. A hybrid approach consist-
ing of spMC methodology and Monte Carlo simulation is
used to accommodate the sparse data in a 3D layout. This
extends the current engineering practice of using linear
interpolations to draw layer boundaries between observed
geomaterials to the usage of geostatistically determined
nonlinear spatial boundaries. It also provides the back-
ground required for the unified analysis of geological
and property uncertainties to design a reliable bridge
foundation system.

The proposed hybrid approach is applied to the bore-
hole data from the Lodgepole Creek bridge replacement
project in Wyoming. Estimation of transition rate matri-
ces is done with the Maximum Entropy Method. Predic-
tions are performed using Indicator Kriging (IK),
Indicator CoKriging (CK), and Multinomial Categorical
Prediction (MCP) methods, and geological uncertainty is
propagated using Monte Carlo simulation. Mean infor-
mation entropy is used to quantify the geological uncer-
14
tainty associated with the predicted geomaterial
categories. The following conclusions are drawn from
the results of this study:

1) The transition rate matrices and transition probabil-
ity matrices can be estimated in 3D using spMC mod-
els with sparse borehole data.

2) The MCP method performs the best in minimizing
overall mean information entropy for the prediction
algorithms in this case study. The cross-validation
of the multiple simulations indicates that the geoma-
terial predictions are generally accurate but depend
upon the consistency of the site-specific borehole
data.

3) The hybrid approach allows for the evaluation of
borehole schemes to reduce geological uncertainty
for all geomaterials or a particular geomaterial. This
in turn facilitates the establishment of an optimum SI
plan for bridge pile foundation design and
construction.

4) The estimation of the geomaterial layer boundary is
critical to the design of an adequate bridge founda-
tion system. The hybrid approach provides a means
by which to compare the current engineering practice
of linear interpolation to obtain spatial boundaries
between geomaterial layers. The use of geostatistical
boundaries will improve the estimation of pile pene-
tration length and resistances during the pile design
stage.

5) Reducing the geological uncertainties and accurate
determination of spatial geomaterial boundaries will
improve the design reliability and safety of bridge
foundation systems following the Load and Resis-
tance Factor Design philosophy.
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de Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., Violette, S.,
2005. Dealing with spatial heterogeneity. Hydrogeol. J. 13, 161–183.
https://doi.org/10.1007/s10040-004-0432-3.

Deng, Z.P., Li, D.Q., Qi, X.H., Cao, Z.J., Phoon, K.K., 2017. Reliability
evaluation of slope considering geological uncertainty and inherent
variability of soil parameters. Comput. Geotech. 92, 121–131. https://
doi.org/10.1016/j.compgeo.2017.07.020.

Deng, Z.P., Jiang, S.H., Niu, J.T., Pan, M., Liu, L.L., 2020. Stratigraphic
uncertainty characterization using generalized coupled Markov chain.
Bull. Eng. Geol. Environ. 79, 5061–5078. https://doi.org/10.1007/
s10064-020-01883-y.

Elfeki, A.M., 2006. Prediction of contaminant plumes (shapes, spatial
moments and macrodispersion) in aquifers with insufficient geological
information. J. Hydraul. Res. 44, 841–856. https://doi.org/10.1080/
00221686.2006.9521735.

Elfeki, A.M.M., Dekking, F.M., 2007. Reducing geological uncertainty by
conditioning on boreholes: the coupled Markov chain approach.
15
Hydrogeol. J. 15, 1439–1455. https://doi.org/10.1007/s10040-007-
0193-x.

Feng, R., Luthi, S.M., Gisolf, D., 2018. Simulating reservoir lithologies by
an actively conditioned Markov chain model. J. Geophys. Eng. 15,
800–815. https://doi.org/10.1088/1742-2140/aaa0ff.

Gao, R.S., Sun, A.Y., Nicot, J.P., 2016. Identification of a representative
dataset for long-term monitoring at the Weyburn CO2-injection
enhanced oil recovery site, Saskatchewan. Canada. Int. J. Greenh. Gas
Control 54, 454–465. https://doi.org/10.1016/j.ijggc.2016.05.028.

Goovaerts, P., 1994. Comparative performance of indicator algorithms for
modeling conditional probability distribution functions. Math. Geol.
26, 389–411. https://doi.org/10.1007/BF02089230.

Grabski, F., 2014. Semi-Markov Processes: Applications in System
Reliability and Maintenance. Elsevier.

Huffman, J.C., Strahler, A.W., Stuedlein, A.W., 2015. Reliability-based
serviceability limit state design for immediate settlement of spread
footings on clay. Soils Found. 55, 798–812. https://doi.org/10.1016/j.
sandf.2015.06.012.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2015. An introduction to
statistical learning: with applications in R. Springer, New York.

Kutner, M.H., Nachstsheim, C.J., Neter, J., 2004. Applied linear
regression models, Fourth. ed. McGraw Hill, Boston.

Li, W., 2007. A fixed-path Markov chain algorithm for conditional
simulation of discrete spatial variables. Math. Geol. 39, 159–176.
https://doi.org/10.1007/s11004-006-9071-7.

Li, W., Zhang, C., 2015. A comment on Sartore’s ‘‘spMC: Modelling
spatial random fields with continuous lag Markov chains.”.

Li, Z., Wang, X., Wang, H., Liang, R.Y., 2016. Quantifying stratigraphic
uncertainties by stochastic simulation techniques based on Markov
random field. Eng. Geol. 201, 106–122. https://doi.org/10.1016/j.
enggeo.2015.12.017.

Li, W., Zhang, C., 2007. A random-path Markov chain algorithm for
simulating categorical soil variables from random point samples. Soil
Sci. Soc. Am. J. 71, 656–668. https://doi.org/10.2136/sssaj2006.0173.

Li, W., Zhang, C., 2010. Linear interpolation and joint model fitting of
experimental transiograms for Markov chain simulation of categorical
spatial variables. Int. J. Geogr. Inf. Sci. 24, 821–839. https://doi.org/
10.1080/13658810903127991.

Lindsay, M.D., Aillères, L., Jessell, M.W., de Kemp, E.A., Betts, P.G.,
2012. Locating and quantifying geological uncertainty in three-
dimensional models: analysis of the Gippsland Basin, southeastern
Australia. Tectonophysics 546–547, 10–27. https://doi.org/10.1016/
j.tecto.2012.04.007.

Montiel, L., Dimitrakopoulos, R., Kawahata, K., 2016. Globally
optimising open-pit and underground mining operations under geo-
logical uncertainty. Min. Technol. 125, 2–14. https://doi.org/10.1179/
1743286315Y.0000000027.

Myers, D.E., 1982. Matrix formulation of co-kriging. J. Int. Assoc. Math.
Geol. 14, 249–257. https://doi.org/10.1007/BF01032887.

Ng, K.W., Masud, N.B., Oluwatuyi, O.E., Wulff, S.S., 2023. Compre-
hensive field test and geotechnical investigation program for develop-
ment of LRFD recommendations of driven piles on intermediate
geomaterials. Cheyenne, WY.

Oluwatuyi, O.E., Holt, R., Rajapakshage, R., Wulff, S.S., Ng, K.W.,
2022a. Inherent Variability Assessment from Sparse Property Data of
Overburden Soils and Intermediate Geomaterials using Random Field
Approaches. Georisk Assess. Manag. Risk Eng. Syst. Geohazards.
https://doi.org/10.1080/17499518.2022.2046783.

Oluwatuyi, O.E., Rajapakshage, R., Wulff, S.S., Ng, K.W., 2022b.
Quantifying geological uncertainty using conditioned spatial Markov
chains. Geo-Congress 2022, 436–445. https://doi.org/10.1061/
9780784484036.043.

Park, E., 2010. A multidimensional, generalized coupled Markov chain
model for surface and subsurface characterization. Water Resour. Res.
46, 1–15. https://doi.org/10.1029/2009WR008355.

Park, E., Elfeki, A.M.M., Song, Y., Kim, K., 2007. Generalized Coupled
Markov Chain Model for Characterizing Categorical Variables in Soil

https://doi.org/10.1111/j.1365-2389.2011.01362.x
https://doi.org/10.1016/j.apenergy.2017.03.017
https://doi.org/10.1134/S1062739149010097
https://doi.org/10.1134/S1062739149010097
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0020
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0020
https://doi.org/10.1007/s00477-002-0114-4
https://doi.org/10.1007/bf02083656
https://doi.org/10.1007/bf02083656
https://doi.org/10.1023/A:1022303706942
https://doi.org/10.1007/s10040-004-0432-3
https://doi.org/10.1016/j.compgeo.2017.07.020
https://doi.org/10.1016/j.compgeo.2017.07.020
https://doi.org/10.1007/s10064-020-01883-y
https://doi.org/10.1007/s10064-020-01883-y
https://doi.org/10.1080/00221686.2006.9521735
https://doi.org/10.1080/00221686.2006.9521735
https://doi.org/10.1007/s10040-007-0193-x
https://doi.org/10.1007/s10040-007-0193-x
https://doi.org/10.1088/1742-2140/aaa0ff
https://doi.org/10.1016/j.ijggc.2016.05.028
https://doi.org/10.1007/BF02089230
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0080
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0080
https://doi.org/10.1016/j.sandf.2015.06.012
https://doi.org/10.1016/j.sandf.2015.06.012
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0090
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0090
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0095
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0095
https://doi.org/10.1007/s11004-006-9071-7
https://doi.org/10.1016/j.enggeo.2015.12.017
https://doi.org/10.1016/j.enggeo.2015.12.017
https://doi.org/10.2136/sssaj2006.0173
https://doi.org/10.1080/13658810903127991
https://doi.org/10.1080/13658810903127991
https://doi.org/10.1016/j.tecto.2012.04.007
https://doi.org/10.1016/j.tecto.2012.04.007
https://doi.org/10.1179/1743286315Y.0000000027
https://doi.org/10.1179/1743286315Y.0000000027
https://doi.org/10.1007/BF01032887
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0140
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0140
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0140
http://refhub.elsevier.com/S0038-0806(22)00177-9/h0140
https://doi.org/10.1061/9780784484036.043
https://doi.org/10.1061/9780784484036.043
https://doi.org/10.1029/2009WR008355


O.E. Oluwatuyi et al. Soils and Foundations 63 (2023) 101269
Mapping. Soil Sci. Soc. Am. J. 71, 909–917. https://doi.org/10.2136/
sssaj2005.0386.

Pedretti, D., 2020. Heterogeneity-controlled uncertain optimization of
pump-and-treat systems explained through geological entropy. GEM -
Int. J. Geomath. 11. https://doi.org/10.1007/s13137-020-00158-8.

Prospere, K., McLaren, K., Wilson, B., 2016. Substrate mapping of three
rivers in a Ramsar wetland in Jamaica: a comparison of data collection
(hydroacoustic v. grab samples), classification and kriging methods.
Mar. Freshw. Res. 67, 1771–1795. https://doi.org/10.1071/MF15033.

Qi, X.H., Li, D.Q., Cao, Z.J., Tang, X.S., 2016. Uncertainty analysis of
slope stability considering geological uncertainty, in: Proceedings of
12th International Symposium on Landslides and Engineered Slopes–
Experience, Theory and Practice. pp. 1685–1693.

R Core Team, 2016. R: A language and environment for statistical
computing. R Foundation for Statistical Computing

Refsgaard, J.C., Christensen, S., Sonnenborg, T.O., Seifert, D., Højberg,
A.L., Troldborg, L., 2012. Review of strategies for handling geological
uncertainty in groundwater flow and transport modeling. Adv. Water
Resour. 36, 36–50. https://doi.org/10.1016/j.advwatres.2011.04.006.

Sartore, L., 2013. SpMC: Modelling spatial random fields with continuous
Lag Markov chains. R J. 5, 16–28. https://doi.org/10.32614/rj-2013-
022.

Sartore, L., Fabbri, P., Gaetan, C., 2016. spMC: An R-package for 3D
lithological reconstructions based on spatial Markov chains. Comput.
Geosci. 94, 40–47. https://doi.org/10.1016/j.cageo.2016.06.001.
16
Sartore, L., 2019. spMC-package: Continuous Lag Spatial Markov
Chains.

Shi, C., Wang, Y., 2021. Smart determination of borehole number and
locations for stability analysis of multi-layered slopes using multiple
point statistics and information entropy. Can. Geotech. J. 58, 1669–
1689. https://doi.org/10.1139/cgj-2020-0327.

Tran, T.T., Han, S.R., Kim, D., 2018. Effect of probabilistic variation in
soil properties and profile of site response. Soils Found. 58, 1339–1349.
https://doi.org/10.1016/j.sandf.2018.07.006.

Wang, Y., Cao, Z., 2013. Expanded reliability-based design of piles in
spatially variable soil using efficient Monte Carlo simulations. Soils
Found. 53, 820–834. https://doi.org/10.1016/j.sandf.2013.10.002.

Wang, X., Wang, H., Liang, R.Y., Liu, Y., 2019. A semi-supervised
clustering-based approach for stratification identification using bore-
hole and cone penetration test data. Eng. Geol. 248, 102–116. https://
doi.org/10.1016/j.enggeo.2018.11.014.

Wellmann, J.F., Regenauer-Lieb, K., 2012. Uncertainties have a meaning:
Information entropy as a quality measure for 3-D geological models.
Tectonophysics 526–529, 207–216. https://doi.org/10.1016/
j.tecto.2011.05.001.

Zhang, Q., Zhu, H., 2018. Collaborative 3D geological modeling analysis
based on multi-source data standard. Eng. Geol. 246, 233–244. https://
doi.org/10.1016/j.enggeo.2018.10.001.

https://doi.org/10.2136/sssaj2005.0386
https://doi.org/10.2136/sssaj2005.0386
https://doi.org/10.1007/s13137-020-00158-8
https://doi.org/10.1071/MF15033
https://doi.org/10.1016/j.advwatres.2011.04.006
https://doi.org/10.32614/rj-2013-022
https://doi.org/10.32614/rj-2013-022
https://doi.org/10.1016/j.cageo.2016.06.001
https://doi.org/10.1139/cgj-2020-0327
https://doi.org/10.1016/j.sandf.2018.07.006
https://doi.org/10.1016/j.sandf.2013.10.002
https://doi.org/10.1016/j.enggeo.2018.11.014
https://doi.org/10.1016/j.enggeo.2018.11.014
https://doi.org/10.1016/j.tecto.2011.05.001
https://doi.org/10.1016/j.tecto.2011.05.001
https://doi.org/10.1016/j.enggeo.2018.10.001
https://doi.org/10.1016/j.enggeo.2018.10.001

	Proposed hybrid approach for three-dimensional subsurface �simulation to improve boundary determination and design of �optimum site investigation plan for pile foundations
	1 Introduction
	2 Methodology
	2.1 Background
	2.2 Estimation of transition rate matrices
	2.3 Subsurface prediction
	2.4 Subsurface simulation
	2.5 Information entropy
	2.6 Validation

	3 Case study
	4 Results
	4.1 Estimation of transition rate matrices
	4.2 Subsurface stratigraphy predictions and uncertainty quantification
	4.3 Validation of simulated subsurface predictions
	4.4 Site investigation plans to reduce geological uncertainty
	4.5 Boundary description of geomaterial layers

	5 Conclusions
	6 Copyright statement
	Declaration of Competing Interest
	Acknowledgements
	References


