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Inherent variability assessment from sparse property data of overburden soils
and intermediate geomaterials using random field approaches
Opeyemi E. Oluwatuyi a, Rebecca Holtb, Rasika Rajapakshageb, Shaun S. Wulff b and Kam Ng a

aCivil and Architectural Engineering Department, University of Wyoming, Laramie, WY, USA; bMathematics and Statistics Department,
University of Wyoming, Laramie, WY, USA

ABSTRACT
This study assesses the inherent variability in the geomaterial parameter by quantifying the
parameter uncertainty and develops a site investigation plan with a low degree of uncertainty.
A key research motivation was using sparse borehole data to predict a site geomaterial
configuration in order to determine the design of a site investigation plan. This study develops
a systematic methodology for carrying out a study of inherent variability in light of the
limitations posed by borehole data. The data in this study was provided by the Iowa
Department of Transportation which consisted of eight boreholes from which 92 associated SPT
N-values was considered as the geomaterial parameter of interest. The systematic methodology
then involved the following steps. A general linear model was employed to fit and compare
various spatial covariance models with and without a nugget. These spatial covariance models
were also evaluated with variograms. Predicted SPT N-values were generated using universal
kriging. Simulations were performed conditionally and unconditionally to identify optimal site
investigation plans. The results identified site investigation plans with reduced parameter
uncertainty. The proposed approach can produce site investigation plans that target any or all
geomaterial layers to reduce uncertainty with respect to any geomaterial parameter of interest.
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1. Introduction

Geotechnical engineering must address geomaterial het-
erogeneity that comes from inherent variability and
geological uncertainty as it affects structure stability.
Engineering judgment, experience, factor of safety,
rules of the thumb, and subjective reasoning have
been used previously to deal with geomaterial hetero-
geneity (Elkateb, Chalaturnyk, and Robertson 2003;
Simpson 2003; Baecher and Christian 2005). However,
this has led to potentially dangerous under design or
expensive over design. Therefore, there is a need to opti-
mally quantify and integrate inherent variability into
geotechnical design. Inherent variability arises mainly
from spatial variations of geomaterial properties/par-
ameter (Deng et al. 2017). It is regarded as the most
influential type of uncertainty in geotechnical engineer-
ing (Christian, Ladd, and Baecher 1994; Phoon and Kul-
hawy 1999; Lloret-Cabot, Fenton, and Hicks 2014).

Inherent variability has often been assessed with ran-
dom field methods (Vanmarcke 2010; Christakos 2012;
Stuedlein et al. 2012; Wang, Au, and Cao 2010; Dasaka
and Zhang 2012; Li, Zhang, and Li 2016). The random
field (RF) approach generates a random field based on

a geomaterial parameter from which to simulate the
subsurface region. Several studies have used RF
approaches, including those by Wang, Zhao, and
Phoon (2018), where they developed a RF generator
based on Bayesian compressive sampling (BCS) and
Karhunen–Loève (KL) expansion to generate samples
from limited data while incorporating the associated
statistical uncertainty. Conditional RF has been applied
to account for the random behaviour of ground proper-
ties to examine the performance of a tunnel liner via
finite-difference modelling within a Monte Carlo simu-
lation framework (Yu et al. 2019). A probability-based
geotechnical analysis using Bayesian RF models has
been implemented to incorporate the inherent variabil-
ity of soil friction angle (Tian et al. 2016). In this
approach, a three-dimensional (3D) conditioned RF
with a low prediction error was used for soil resistance
estimation at unsampled locations based on limited
cone penetration tests (Cai et al. 2019). A two-dimen-
sional (2D) RF model based on the Karhunen–Loève
expansion was generated to account for hydraulic con-
ductivity uncertainties and spatial variation in a layered
soil profile (Cho 2012). This stationary RF was modified
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to a more accurate non-stationary RF to account for the
mean and variance of the soil properties (Jamshidi Che-
nari and Kamyab 2015).

The study of inherent variability is also important for
constructing a site investigation plan. This is because
inherent variability assessed through parameter uncer-
tainty can be reduced through the determination of an
adequate number of well-placed boreholes (BHs). Heat-
maps were generated with the random finite element
method to determine the optimal location for a single
borehole in a single-layered soil (Crisp et al. 2020). In
another study by Crisp, Jaksa, and Kuo (2020a), several
factors like soil parameters, number of piles, stiffness
ratios between soil layers, and layer boundaries were
examined to determine an optimal investigation plan.
The effect of these factors on the optimal site investi-
gation were studied individually rather than collectively.
The authors concluded that the optimum number of
boreholes were affected by the number of piles, stiffness
ratio, and degree of undulation in soil layers. In another
related study, the optimal site investigation plan was
examined for the design of an undrained slope (Yang
et al. 2019). These authors determined the number of
boreholes required to characterise the slope with a low
degree of inherent variability as measured through the
standard deviation. The standard deviation is a com-
monly used statistical measure of uncertainty, which is
used in this study to assess the inherent variability of
the geomaterial parameter. A low degree of inherent
variability implies a small standard deviation value for
the geomaterial parameter. Quantification of variability
in different rock types had shown low variability in bulk
density, specific gravity, and unit weight, while rock
properties with high variability include strength, poros-
ity, and water content (Aladejare and Wang 2017). An
approach to detect the minimal number of rock speci-
mens needed for laboratory uniaxial compressive
strength testing using variograms and directional
covariance maps were developed by Boyd, Trainor-
Guitton, and Walton (2018).

Though these studies served as background to this
present study, the previous analyses were limited to
layered soil (Zhao et al. 2013) or rock (Chen et al.
2019). However, especially in the Rocky Mountain
region, deep foundations for bridges are driven into
shallow bedrock stratigraphy known as intermediate
geomaterials (IGMs), which are an acclaimed variable
material with properties between soil and rock (Adhi-
kari et al. 2020). Apart from the challenges with their
geotechnical and geological characterisation, presently
little is known on the inherent variability of IGMs.
The contributions of this study were, therefore, aimed
at (a) predicting geomaterial parameter of interest for

the study area using sparse borehole data, (b) assessing
inherent variability through the quantification of par-
ameter uncertainty of multilayered geomaterials
including the IGM layer, and (c) obtaining a site inves-
tigation plan with a low degree of parameter uncer-
tainty. Thus, the RF estimation approach in this study
needed to be modified accordingly over previous
approaches. For example, ordinary kriging, which
treats all the geomaterial layers with a constant mean,
was used in previous studies for the estimation of the
RF (Lloret-Cabot, Hicks, and van Den Eijnden 2012;
Al-Bittar, Soubra, and Thajeel 2018; Soubra et al.
2019). This study uses universal kriging so that all geo-
material layers are analyzed with different means with
respect to the geomaterial parameter. By combining
the layers this way, it is possible to gain additional
and important information on the spatial structure of
the whole site while also improving geomaterial par-
ameter prediction at unsampled location of the random
field. The standard deviation (SD) reduction method
was suggested for the selection of site investigation
plan in a single layer soil (Crisp, Jaksa, and Kuo
2020b). However, in this study, SD reduction method
is performed in an optimal manner as follows: First,
to reduce uncertainty with respect to a geomaterial par-
ameter in pile foundation design, boreholes are rec-
ommended near or on a foundation (Arsyad et al.
2010; Goldsworthy et al. 2007). Subsequent boreholes
are thereafter selected to reduce the standard deviation
of the predictions with respect to the IGM layer. RF
modelling in this study was conducted with both 2D
and 3D representations. The 2D representation pro-
vided a simpler analysis while the 3D provided specific
x and y coordinates for borehole drilling. Because of
these analyses contribution, site-specific recommen-
dations were made to determine a site investigation
plan. The plan involved selection of an optimal num-
bers of boreholes, the locations of these boreholes,
and the sampling depths within the random field
(study site). This information is particularly beneficial
for engineering projects with relatively similar dimen-
sions and subsurface profiles to this present case
study, where there are no test data, or the data is very
sparse. The paper presents the techniques and methods
used in the inherent variability study (Section 2), the
dataset used as a case study (Section 3), the results
and discussions from the analyses (Section 4), and con-
clusions and recommendations (Section 5).

2. Methodology

This section details the methods used to characterise
inherent variability in this study. The R program
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was chosen due to its accessibility and versatility for
conducting the required analyses. Specific R packages
and functions will be listed in the discussions as
appropriate. The proposed systematic process of asses-
sing inherent variability involved specifying the gen-
eral linear model and variogram fit after the
geomaterial property had been assigned to the corre-
sponding grid of a random field. Universal Kriging
is thereafter used in predicting the geomaterial prop-
erty of the discretised region. Virtual boreholes,
which form a proposed sampling plan, were then
drilled on geostatistically simulated realisations of the
site. Inherent variability was then assessed from the
quantified standard deviation obtained from the stat-
istical analysis on the drilled virtual boreholes. A
flowchart showing the process, and the specific R
package functions, is displayed in Figure 1. The meth-
odology subsections elucidate more on the proposed
systematic process of assessing inherent variability.

2.1. General linear model

The random response of interest (Y) is a geomaterial
based quality characteristic, which could vary within
the study area both spatially and in the mean. The gen-
eral linear model (GLM) was used with a specific spatial
covariance structure to model Y as given by:

Y = Xb+ E (1)

where it is assumed that the model errors satisfy
E � Normaln(0, S) so that the expected value is
1(Y) = Xb and the covariance matrix ›(Y) =S.

The covariance matrix S is important to account for
the spatial structure. The spatial correlation function
was specified via H(r) as:

S = s2H(r) (2)

where r represents the range parameter and s2 rep-
resents the partial sill. A nugget (t2) was used to account
for the measurement error or additional spatial vari-
ation that would be observed at the origin of the vario-
gram (Diggle and Ribeiro Jr 2002). With the addition of
the nugget, the covariance matrix becomes:

S = s2H(r)+ t2I . (3)

Four spatial correlation functions considered for
H(r) which were Exponential, Gaussian, Linear, and
Spherical functions given in Equation (4) through
Equation (7), respectively (Pinheiro and Bates 2006):

H(r) = exp(−h/r) (4)

H(r) = exp(−(h/r)2) (5)

H(r) = 1 − h
r

( )[ ]
I(h , r) (6)

H(r) = 1 − 1.5
h
r

( )
+ 0.5

h
r

( )3
[ ]

I(h , r) (7)

The above equations give correlation values H(r) as
a function of the Euclidean distance (h) between the
spatial locations. The null model has a correlation func-
tion H(r) equal to 1.

In this study, the geomaterial layers were assumed to
have different true means that affect the expected value
in Equation (1). Thus, the unknown regression coeffi-
cient vector (b) was used to estimate these means. The
corresponding design matrix was then given by

X = I(nl)p ⊗ 1nl = diag(1n1 , 1n2 , . . . , 1nm) (8)

which is the Kronecker product (⊗) of the identity
matrix (I) and the vector with values 1 (1) where p
denotes the number of geomaterial layers and nl denotes
the number of observations per layer. Generalised least
squares (GLS) was used to estimate the unknown
regression coefficients (b). The GLS estimate (̂b) is
given by Equation (9) and the standard errors given
by Equation (10) as

b̂ = (X′Ŝ
−1
X)−1X′Ŝ−1y (9)

ŝe(̂b) = (diag[(X′Ŝ
−1
X)

−1
])1/2 (10)

The GLMwas fit with restricted maximum likelihood
(REML) to obtain the estimate of the covariance matrix
(Ŝ). This study illustrates how to evaluate and choose
covariance structures using the GLM. Given these esti-
mates b̂ and Ŝ, the model can be evaluated using the
−2 × REML log-likelihood (n2llik) (Pinheiro and Bates
2006). The value of n2llik is obtained from gls{nlme}
in R for the non-nugget GLM in Equation (2), and
from lme{nlme} in R for the nugget GLM in Equation
(3). From Harville (1977), the −2 × REML log-likeli-
hood (n2llik) is given by

n2llik = (n− p) ln (2p)+ ln (Ŝ)+ ln (X′Ŝ
−1
X)

+ (y− Xb̂)′Ŝ−1(y− Xb̂) (11)

Information criteria were obtained from Equation
(11). In particular, the Akaike information criterion
(AIC), Akaike information criterion with correction
for small sample sizes (AICc), and Bayesian information
criterion (BIC), were used to compare different spatial
covariance structures. Table 1 describes the penalties
that define these information criteria, which include
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the number of observations n, p is the number of col-
umns of X, and the number of covariance parameters
(c). The assumption of isotropy is also assessed by com-
paring the information criteria between two models
where one model was fit with isotropy and one model
was fit with anisotropy using the chosen specification
for S (R: likfit{geoR}).

This study also shows how to use Cholesky residuals
to assess the assumption of multivariate normality and
to identify outliers for the GLM. Given the estimated
value b̂, these residuals (̂r) are given by

r̂ = (L̂
−1
)′(y− Xb̂) = (L̂

−1
)′̂e (12)

where L̂ is the Cholesky decomposition of Ŝ with
(L̂

−1
)(L̂

−1
)
′ = Ŝ −1 and (L̂

−1
)
′
Ŝ (L̂

−1
) = I (Houseman,

Ryan, and Coull 2004).

2.2. Variogram

The errors (E) for the GLM in Equation (1), along with
the spatial correlation functions in Equations (4), (5),
(6) and (7), assume stationarity and isotropy. Under
these assumptions, the spatial correlation structure can
be represented by the semi-variogram (g) as a function
of lag distance (h):

g(h) = 1
2
1[(Es − Ev)

2] (13)

where h =|| s− v || represents the Euclidean distance
between coordinate s and coordinate v (Pinheiro and
Bates 2006).

The semi-variogram in Equation (13) consists of the
scaled expected squared differences as a function of h.
An estimate of the semi-variogram, ĝ(h), can be
obtained by replacing the errors in Equation (13) with

Figure 1. Flowchart for inherent variability and sampling assessment (R functions and packages are listed in parentheses).

Table 1. Information criteria used for model selection.
Information criteria Penalty

AIC n2llik + 2( p+ c)

AICc n2llik + 2( p+ c)× n
(n− ( p+ c)− 1)

BIC n2llik + 2( p+ c)ln(n− p)
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the mean of the residuals ê in Equation (12) that have a
distance h (Pinheiro and Bates 2006, 231). The residuals
are standardised by the variance of the errors. Ordinary
least squares estimation is used to obtain b̂, which cor-
responds to Equation (9) with Ŝ = I. The sample semi-
variogram is then created to visualise the averages from
the semi-variogram cloud over the standardised
residuals at a distance h.

The variogram outlines the geomaterial property
variation within a region, and it is needed for kriging
prediction (Webster and Oliver 1992). Variogram mod-
elling is often helpful when the variogram is to be used
for spatial prediction or simulation. A parametric vario-
gram model is specified and fit to the sample variogram.
The variogram models are chosen from among the
spatial correlation functions by Equations (4), (5), (6),
and (7). REML estimates are obtained for the partial
sill, range, and nugget parameters (R: fit.variogram.-
reml{gstat}).

2.3. Kriging

Kriging is used in spatial statistics to obtain predictions
for unsampled locations. Kriging utilises best linear
unbiased prediction (BLUP) at an unobserved location
based upon the observed data. This study describes
and performs universal kriging due to the presence of
covariates (R: krige{gstat}) (Bivand et al. 2008). The
BLUP for universal kriging is given by:

ŷ(s0) = x(s0)
′b̂+ v̂′Ŝ−1(y(s)− Xb̂), (14)

where s is the observed spatial location, s0 is the unob-
served spatial location to be predicted, b̂ is the general-
ised least squares estimate from Equation (9), Ŝ is the
REML estimate of S, x(s0) is value of the design matrix
at s0, y(s) is the value of the geomaterial parameter at s,
and v̂ is a vector of covariances with entries
ĉov(Y(s0), Y(si)) for i = 1, . . . ., n (Pebesma 2004;
Bivand et al. 2008). If there is no nugget, then the pre-
dictions at observed locations will match the observed
values. However, if a nugget is present, then the predic-
tions at observed locations may not match the observed
values (Banerjee, Carlin, and Gelfand 2014).

2.4. Geostatistical simulation

Geostatistical simulation (GS) refers to the simulation of
possible realisations of a random field given the mean
structure, residual spatial structure, and possibly
observed data (Bivand et al. 2008). These simulations
are typically Gaussian GS (GGS) based upon the original
data or transformed data. GGS is needed to account for

the uncertainties associated with the plug-in estimates
used to perform kriging using Equation (14). These
uncertainties can then be built into the next stage of
an analysis. The general idea is to simulate a vector of
standard normal values and transform these values
using the multivariate standard normal transformation.
These algorithms were developed to make the simu-
lation process less computationally expensive (Pebesma
2004). It is possible to include covariates by simulating a
value at simulation (s) of the fixed effect parameters
(b̂

(s)
) from the multivariate normal distribution with

mean b̂ obtained from Equation (9) and covariance
matrix (X′Ŝ

−1
X)−1 from Equation(10).

In this study, simulations were conducted using con-
ditional and unconditional approaches. Conditional
simulation produces realisations that match the data
at the observed locations by working with the con-
ditional distribution given the data (R: krige{gstat})
(Bivand et al. 2008). Unconditional simulation is
based upon the marginal normal distribution to repro-
duce the means and spatial covariance structure (R:
gstat{gstat}). In this way, the uncertainties in both the
parameter estimates and the responses are maintained
and can be simultaneously propagated into additional
analyses.

For each simulation, the sample mean of the simu-
lated geomaterial based property was obtained for
each geomaterial type across the sampled locations. In
this study, these sample means were then summarised
across the simulations in terms of the mean, standard
deviation, and 95% equal tails percentile interval. By
using this sampling-based approach, it was not necess-
ary to assume normality or independence of the sample
means across the simulations to obtain the summaries.

The standard deviation, or the length of the percen-
tile interval, was then used to assess the inherent varia-
bility of a geomaterial based quality characteristic for a
given site investigation plan. The standard deviation
reduction method was used whereby the simulated stan-
dard deviation of the mean of the simulated parameter
is reduced until further reduction was no longer cost
effective. The standard deviation formula used in this
study is given by

SDl = 1
ns − 1

∑ns
i=1

(ŷi,l − ŷl)
2 (15)

where l indexes the layer, i indexes the simulation, ns is
the total number of simulations, ŷi,l is the predicted log
SPT N for layer l and simulation i, and ŷl is the sample
mean of the predicted log SPT N for layer l and simu-
lation i. Virtual boreholes are initially located near or
on the foundation to reduce uncertainty during the
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pile foundation design. Subsequent boreholes are there-
after located so as to minimise SDl in Equation 15 for
any of the layers or combination of layers. Thus, optimal
boreholes are added to the sampling plan if they suitably
reduce the difference between the predicted log mean
SPT N and the mean of the predicted log mean SPT N
for layer l across the simulations. This method is nicely
visualised with scree plots involving the SDl in Equation
15 versus the number of boreholes. Different site inves-
tigation sampling plans were compared and evaluated
using these standard deviations.

3. Data

The data for this study was taken from a project site to
replace an existing US 63 bridge and culverts over a
drainage ditch about 0.3 miles south of Ottumwa,
Wapello County, Iowa. A Standard Penetration Test
(SPT) was chosen as the in-situ test method because it
was the current practice of the Iowa Department of
Transportation (IADOT) in investigating the subsurface
with IGM layer. The SPT N-value is the number of ham-
mer blows within a borehole to drive a 2-inch split-
spoon sampler 12 inches into a geomaterial, and SPT
N-values were used as the geomaterial parameter in

this study. The advantages of using a borehole with
SPT included (i) its suitability for dense geomaterials
like IGMs, (ii) sampling of disturbed and undisturbed
geomaterials for laboratory testing, and (iii) allowing
for in-situ determination of geomaterial parameters.
Figure 2 shows the eight boreholes represented with
black–white circles along with SPT tests conducted at
the borehole locations with respect to the four bridge
foundation locations. The foundations were north abut-
ment (N.ABUT), centre pier 1 (C.PIER 1), centre pier 2
(C.PIER2), and south abutment (S.ABUT). The eight
boreholes were in line with AASHTO recommendations
for bridges (superstructure) with over 100 ft. in width.

The subsurface was characterised in four geomaterial
layers (Figure 3) with layer 1 consisting of dark brown-
gray stiff clay, layer 2 consisting of brown-gray clayey/
fine sand to coarse sand, layer 3 consisting of gray
firm to stiff silt with brown firm sand clay with
brown-gray firm clay and gravel, and layer 4 consisting
of gray slightly to moderately weathered shale, which
was considered as the IGM layer. The SPT hammer
blows obtained in most samples in layer 4 could not
achieve a full 12-inch penetration, and hence the ham-
mer blows were linearly extrapolated using Equation
(16) to obtain an equivalent N-value for a consistent

Figure 2. Eight boreholes at the bridge site in Wapello County, Iowa.
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and comparable analysis. The study simultaneously
considered all four geomaterial layers, so it was necess-
ary to have the SPT N-values on a comparable scale in
the analysis. By simultaneously combining the layers
this way, there is an important gain in information on
the spatial structure of the whole study site. This
approach also allows for improved estimation and pre-
diction of the SPT N-values.

Extrapolated SPT N value

= Measured SPT hammer blows
Penetration depth before refusal (inches)

× 12 inches (16)

The data were analyzed both in two and three dimen-
sions. The 2D analysis had all boreholes projected to a
straight line at the centre of the y-axis. The 2D analysis
allowed for easy and efficient computations. The SPT N-
value, layers, x-axis (South–North), and z-axis (Depth)
were of interest as shown in Figure 3. The 3D analysis
was conducted to reflect the coordinates consistent at
the site. The 3D random field of SPT N-values is
shown in Figure 4. The dimension of the random field
is +220 ft. by +100 ft. by −80 ft. for the x, y, and z
axes, respectively, starting at the origin (Figure 2). The
negative sign in the z axis is due to the fact that depth
is described below the ground surface.

There were a total of 92 SPT N-values obtained from
the eight boreholes drilled in the study area. Initial ana-
lyses of the Cholesky residuals in Equation (12) from
fits of the general linear model in Equation (1) revealed
that a lognormal transformation was needed for the
SPT N-values to satisfy normality assumptions. The log-
normal distribution was archetypal of geomaterial par-
ameters like SPT N-values (Grasmick et al. 2020). With
this logarithm transformation, two outliers were identified
which had Cholesky residual values withmagnitude larger
than 3. The outliers corresponded to borehole 4 (x = +184
ft., z =−44.0 ft., SPT N-value = 120, layer = 3) and bore-
hole 7 (x = +153 ft., z =−22.5 ft., SPT N-value = 1, layer
= 2). After the removal of outliers, all analyses were con-
ducted on the dataset containing 90 observations.

4. Results and discussion

Various spatial covariance models were examined
assuming different mean log SPT N-values for each of
the four layers. The system of analysis of inherent varia-
bility proposed in this study included identifying an
adequate spatial covariance structure using the GLM,
comparing fits with the variogram, generating predic-
tion surfaces, and obtaining simulations for assessing
site investigation plans. Each of these aspects are
addressed in the following subsections.

Figure 3. Observed 90 SPT N-values from eight boreholes for the 2D analysis.
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4.1. General linear model

The GLM in Equation (1) was fit to log SPT N-values for
the spatial covariance structures in Equations (4), (5),
(6), and (7) for both the 2D and 3D analyses. For the
2D analysis, the Euclidean distances (h) were calculated
based upon pairs of x and z coordinates, whereas for the
3D analysis, the Euclidean distances (h) were calculated
based upon pairs of the x, y, and z coordinates.

For all spatial structures, the nugget variance t2 in
Equation (3) was estimated to be 0, and so it was not con-
sidered for inclusion in the model. The information cri-
teria for the GLM given in Table 2 were calculated for
both 2D and 3D based distances, where smaller is better
for these values. It is evident that the Null model with
no spatial correlation is inferior to the other four models
that incorporate spatial correlation. The information cri-
teria values for the spatial correlation structures were
nearly identical for the 2D analysis and very similar for
the 3D analysis. The Spherical structure had slightly smal-
ler information criteria values for the 3D analysis. Never-
theless, the Exponential covariance structure was selected
since it was close to the smallest values for both the 2D

and 3D analyses, it is a simple structure, and it has been
applied in other studies (Li, Genton, and Sherman 2008;
Littell, Pendergast, and Natarajan 2000; Hicks 1996).

The assumption of isotropy was checked in this study
by fitting an anisotropic model for log SPT N-values
with the Exponential spatial structure. This assumption
was checked based upon 2D analysis of the (x,z) and (y,
z) coordinate systems. The values for n2llik, AIC, AICc,
and BIC using the formulas in Table 2 are shown in
Table 3 for the Exponential spatial structure. The infor-
mation criteria favor the more parsimonious isotropic
model.

The null hypothesis that the model errors were all
normally distributed was also assessed using the Cho-
lesky residuals in Equation (12) for the estimated Expo-
nential covariance function in the 2D and 3D analyses.
The Shapiro–Wilk (W) normality test of the Cholesky
residuals had little evidence against the claim that the
log SPT N responses were normally distributed for the
2D analysis (W test statistic = 0.9783, p-value = 0.1382)
and for the 3D analysis (W test statistic = 0.9792, p-
value = 0.1591) as these p-values exceed 0.1.

Figure 4. Observed 90 SPT N-values from eight boreholes for the 3D analysis.

Table 2. Information criteria (smaller is better) of the GLM for the 2D and 3D analyses.

GLM

2D 3D

n2llik AIC AICc BIC n2llik AIC AICc BIC

Null 169.299 179.299 180.013 191.571 169.299 179.299 180.013 191.571
Exponential 163.995 175.995 177.007 190.721 165.160 177.160 178.172 191.886
Gaussian 163.438 175.438 176.449 190.164 164.075 176.075 177.087 190.801
Linear 163.794 175.794 176.806 190.520 164.071 176.071 177.083 190.797
Spherical 163.458 175.458 176.470 190.184 163.988 175.988 177.000 190.714
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4.2. Variogram

The variogram of the logarithm SPT N-values was fit
using the spatial correlation functions in Equations
(4), (5), (6), and (7). These variograms for the 2D
and 3D analyses are displayed in Figure 5(a,b), respect-
ively, to visualise the partial sill, where the variogram
reaches its plateau, and the range, which corresponds
to the distance h at which the sill is attained (Bivand
et al. 2008). It is evident that the Null model does
not provide a good fit. However, the Exponential
(Exp), Gaussian (Gaus), Linear (Lin), and Spherical
(Spher) spatial correlation functions all fit similarly,
which confirms the previous information criteria com-
parisons for the GLM. In fact, the Gaussian and Spheri-
cal fits are nearly identical in both the 2D and 3D
analyses. The most visible differences in these fits are
in the range, which differ the most between the Expo-
nential and Linear spatial correlations. Nevertheless,
the spatial correlation fits are quite similar as suggested
by the information criteria.

4.3. Kriging

Kriging was used to obtain predicted 2D and 3D surfaces
of SPT N values on the log and original scales for the 2D

analysis (Figure 6) and the 3D analysis (Figure 7). These
predictionswere based uponmodelling log SPTN-values
with the Exponential spatial correlation function, and
back-transformation of the log SPT N-values was used
to obtain predictions on the original scale. The predicted
SPT N-values are the same as the data at observed
locations since the covariance model does not include a
nugget. For example, a SPT N-value of 8 in Figure 3
has the same value at the exact position (x = 25ft., z =
−5ft.) on the kriging plot in Figure 6(b).

4.4. Geostatistical simulation and optimal
borehole location determination

Gaussian Geostatistical Simulation (GGS) was used to
evaluate site investigation plans in terms of the number
and placement of boreholes. One hundred simulations
were obtained both conditionally and unconditionally
from the predicted surfaces of log SPT N-values. The
number of simulations was adequate as additional simu-
lations resulted in less than ±1% change in variation of
the log SPT N-values (Pyrcz and Deutsch 2014).

To reduce uncertainty during pile foundation design,
boreholes are better located near or on a foundation
(Arsyad et al. 2010; Goldsworthy et al. 2007). Thus, to

Table 3. Information criteria (smaller-is-better) of the GLM with Exponential spatial correlation for the 2D analyses with the (x, z) and
(y, z) coordinate systems.

GLM

(x, z) (y, z)

n2llik AIC AICc BIC n2llik AIC AICc BIC

Isotropic 163.995 175.995 177.007 190.721 163.811 175.811 176.824 190.538
Anisotropic 162.283 178.283 180.061 197.918 159.935 175.935 177.712 195.569

Figure 5. Variograms for the (a) 2D analysis and (b) 3D analysis.
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obtain a site investigation plan with the lowest standard
deviation (uncertainty), four virtual boreholes, marked
as 1st to 4th BHs, were each placed at the four foun-
dation locations of the 100 simulations. Subsequent
borehole locations were determined in the 2D analysis
by placing virtual boreholes at every 5 ft. position
throughout the x-axis (over the 220 ft. in the x-axis),
except for where virtual boreholes were already located.
The idea was to select those boreholes that yielded the
lowest standard deviation for the highly variable IGM
layer (layer 4, the target layer). This was done by select-
ing boreholes which minimised SDl in Equation 15
with respect to layer 4. Once optimal boreholes were
identified, they were then added to the bulk of pre-
viously selected boreholes and analyzed to determine
the uncertainty for the site. Another aspect of the site
investigation plan is the sampling frequency. The two
sampling frequencies considered in this study were (i)
taking SPT N samples at every 5 ft. from ground to
the terminating depth of 80 ft. (all samples per layer)
and (ii) taking one sample per layer. Thus, sampling fre-
quency approach (i) is dependent upon the layer thick-
ness whereas sampling frequency approach (ii) is not.

The subsequent borehole locations for the 2D analy-
sis by taking all samples per layer for the conditional

and unconditional simulation is shown in Figures 8
and 9, respectively. The black circular markers in
these figures suggest the two virtual borehole locations
on the x-axis with the lowest standard deviation values
in the IGM layer. An important observation from
Figures 8 and 9 is that the line plot flattens out especially
in layer 4 (IGM layer) after the addition of the 6th bore-
hole. This suggests that six (6) boreholes are optimally
sufficient for the reduction of parameter uncertainty
of the site in the IGM layer.

In this study, the 3D analysis was conducted to deter-
mine the corresponding y-axis for the already obtained
x-axis locations in the 2D analysis described in the pre-
vious paragraph. Virtual boreholes were then placed at
every 5 ft. along the breadth of the y-axis corresponding
to the already obtained x-axis locations. The position on
the y-axis with the lowest standard deviation after the
analysis was chosen as the corresponding y coordinate
as shown in Figure 10. The sampling locations for 12
boreholes on the x- and y-axes as obtained from the
conditional simulation (Figure 8) and the unconditional
simulation (Figure 9) are displayed in Table 4.

The previously described methodology was also used
to identify borehole locations for taking one sample per
layer. The 12 borehole locations on the x and y axes

Figure 6. 2D plot of (a) predicted log SPT N and (b) back-transformed SPT N values using universal kriging.

Figure 7. 3D plot of (a) predicted log SPT N and (b) back-transformed SPT N values using universal kriging.
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obtained from the conditional and unconditional simu-
lation are displayed in Table 5. These sampling locations
had a range of ±3 ft. Sampling from these range resulted
in no change or less than 1% increase in the standard
deviation.

4.5. Discussion

The inherent variability in the IGM layer, which was
assessed by quantifying the standard deviation of the
unconditional simulation for the different site investi-
gation plans and different sampling frequencies, is

Figure 8. Subsequent borehole locations from conditional simu-
lation for sampling all depths per layer.

Figure 9. Subsequent borehole locations from unconditional
simulation for sampling all depths per layer.
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Figure 10. The y coordinates from unconditional simulation of sampling all depths per layer for the first six boreholes.

Table 4. Conditional and unconditional borehole position coordinates for sampling at all depths per layer.

Simulation type Coordinate

Location of Borehole Number (ft)

1 2 3 4 5 6 7 8 9 10 11 12

Conditional X-axis 35 80 140 185 95 25 155 145 90 205 30 170
Y-axis 0 5 15 30 95 30 20 10 25 5 70 65

Unconditional X-axis 35 80 140 185 115 95 175 10 200 215 145 160
Y-axis 30 50 35 10 95 95 15 45 85 90 35 90

Table 5. Conditional and unconditional borehole position coordinates for sampling at one depth per layer.

Simulation type Coordinate

Location of Borehole Number (ft)

1 2 3 4 5 6 7 8 9 10 11 12

Conditional X-axis 35 80 140 185 215 170 95 150 125 65 90 45
Y-axis 75 15 100 30 25 60 30 75 90 0 95 40

Unconditional X-axis 35 80 140 185 170 5 150 145 10 60 100 115
Y-axis 15 30 30 90 50 35 75 0 65 45 5 100
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presented in Table 4. The unconditional simulation
does not match the data at the observed locations,
because it is completely independent and only shares
spatial moments with data (Pebesma and Wesseling
1998). Thus, it provided a basis to compare the standard
deviation in the geomaterial parameter of different
sampling plans at sites with a similar geomaterial
profile. The standard deviation values were a bit high
as shown in Table 6 due to the high mean SPT N-
value (≈ 290) in layer 4. Table 6 shows that the uncon-
ditionally obtained sampling plan had the lowest stan-
dard deviation for both sampling frequencies.
However, sampling at all depths per layer (equivalent
of every 5 ft.) had more than 50% reduction in the
SPT N-value standard deviation compared to sampling
at one depth per layer. A comparison of eight boreholes
from the proposed site investigation plans with the
actual site investigation plan conducted by IADOT is
shown in Figure 11. According to Figure 11, the first
six boreholes on all three sampling plans had almost
the same longitudinal coordinates, except for the 5th
borehole in IADOT and unconditional sampling plan
and the 6th borehole in the conditional sampling plan.
This was also in agreement with the results in Figures
8 and 9, as the line plot flattens out especially in the
IGM layer 4 after the 6th borehole. The first six bore-
holes on unconditional and IADOT sampling plans
had almost the same transverse coordinates, except for
the 5th BH in IADOT sampling plan. Table 6 shows
that for all samples per layer, the difference in the stan-
dard deviation after adding the 7th borehole became less
significant compared to the addition of the previous
boreholes. For example, the addition of the 5th, 6th,
and 7th boreholes in the unconditional sampling plan
for all samples per layer (Table 6) resulted in approxi-
mately 17.2%, 8.4%, 8.5% decrease in the standard devi-
ation, respectively. The addition of the 7th borehole
resulted in little or no difference in standard deviation
reduction which may be responsible for the curve
flattening out in Figures 8 and 9 after 6 boreholes.
One could conclude that the optimal number of bore-
holes for the present case study was six (6). Another
vivid observation from the study was the fact that

location matters for reduced standard deviation when
drilling borehole(s). For example, according to all
samples per layer in Table 6, six boreholes from the
sampling plan obtained from unconditional simulation

Table 6. Standard deviation (SD) in the IGM layer from the unconditional simulation of the different site investigation plans and
sampling frequencies.

Sampling frequency Sampling plan

SD based on number of boreholes

1 2 3 4 5 6 7 8

All samples per layer Unconditional 64.90 46.11 35.76 31.05 26.49 24.46 22.54 21.60
Conditional 65.52 51.68 42.50 37.50 30.47 27.67 25.89 25.61
IADOT 69.89 46.30 40.68 34.61 31.33 29.87 28.18 25.68

One sample per layer Unconditional 133.22 100.02 82.44 72.50 68.05 58.84 55.80 48.51
Conditional 143.29 110.22 83.35 77.98 71.34 67.60 61.90 53.58
IADOT 178.93 104.26 91.87 77.01 67.76 63.99 57.91 55.02

Figure 11. Comparison of different site investigation plans.
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of present data had a lower standard deviation (24.46)
compared to that of eight (8) boreholes in the plans
from the conditional simulation (25.61) and IADOT
(25.68). The lower standard deviation of unconditional
simulation compared to the conditional simulation
could be due to the assumption of the normal distri-
bution as the conditional simulation makes no such
assumptions, and so is nonparametric.

5. Conclusions

This study presented an effective and systematic method
to quantify inherent variability with respect to a geoma-
terial parameter, and to reduce this variability through
proposed geotechnical investigation plans. Various
spatial covariance structures were fit with and without
a nugget. The fits of the spatial correlation functions
were visualised with the variogram and compared via
information criteria associated with fits of the General-
ised Linear Model. The chosen covariance model in this
study had no nugget, an Exponential correlation func-
tion, and assumed isotropy. Predictions were obtained
with respect to the selected covariance model in 2D
and 3D analyses using universal kriging. Conditional
and unconditional simulations were conducted based
upon the predictions at different sampling frequencies
with depth. The site investigation plan was obtained,
which best reduced the standard deviation while also
minimising the required number of boreholes. It was
found, as expected, that taking samples at all depths
(an equivalent of every 5 ft.) resulted in approximately
50% lower variability compared to taking one sample
per layer. However, it must be remembered that the
amount of variability depends on layer thickness when
taking samples at all depths. The unconditional simu-
lation tended to produce an approximately 18.6%
lower variability than the conditional simulation,
which is likely due to the assumption of normality,
which appeared reasonable for the log SPT N-values at
this site. The proposed plan fared well in standard devi-
ation reduction compared to the actual plan carried out
by IADOT at this site. The proposed unconditional
sampling plan can also be applied at another site with
a similar subsurface profile. The proposed method is
applicable to addressing inherent variability and site
investigation plans in any multilayered geomaterial.
This is because layers are analyzed collectively with
different means and with respect to the geomaterial par-
ameter of interest. For future analyses with limited data,
a Bayesian approach could be considered with carefully
constructed informative priors on the covariance
parameters.
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