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Fungi are known to produce diverse scaffolds possessing unique biological activities, however, to date, no
molecule discovered from a fungal source has reached the market as an anti-cancer drug. Every year number of
cytotoxic molecules of fungal origin are getting published and critical analysis of those compounds is necessary
to identify the potent ones. A review mentioning the best cytotoxic fungal metabolites and their status in the
drug development was published in 2014. In this report, we have included 176 cytotoxic molecules isolated from
fungi after 2014 and categorized them according to their potencies such as IC50 values below 1 μM, 1–5 μM, and
5–10 μM. The emphasis was given to those 42 molecules which have shown IC50 less than 1 μM and discussed
to a great extent. This review shall provide potent scaffolds of fungal origin which can be given priority in the
development as a drug candidate for cancer therapeutics.

Keywords: potent fungal metabolites, cancer drug discovery, endolichenic fungi, endophytic fungi, terrestrial
and marine fungi.

Introduction

Scientists are zealously trying to reduce the toxicity of
the current chemotherapeutics by coalescing them
with nature based molecules.[1,2,3] Fungi, the largest
eukaryotic kingdom can produce compounds having
immeasurable structural diversity belonging to classes
azaphilones, cytochalasans, macrolides, anthrace-
nones, naphthalenones, and many more.[4] A list of
molecules isolated from fungi include hypothemycin,
radicicol, demethoxyviridin, fussicocin A, destruxin B,
fumagillin, cytochalasin E etc.[5] Although, the focus of
fungal metabolites have been limited towards the
antimicrobial activity, fungi have immense potential to
produce cytotoxic secondary metabolites in response

to predators, UV radiation, along with competition
from other microbes.[6,7] The polyketide synthase path-
way in fungi is known to produce diverse scaffolds
with antitumor activity.[8]

Despite the significant contribution, no molecule
has yet reached the market as an anti-cancer drug
having a fungal origin.[9] This indicates the existence of
lacunas in the process of converting the potent
molecules from fungi into a suitable drug candidate. A
cytotoxic drug candidate must at least display (i)
selectivity between cancer cells and normal cells (ii)
active against multidrug-resistant (MDR) cancer cells;
and (iii) should have a specific mechanism of action.[4]

Further, the selected leads have to go through
rigorous drug development processes before it
reaches the patients. To invigorate the research
interest for fungal secondary metabolites, it is impor-
tant to re-analyse potent cytotoxic molecules reported
from fungi to understand its current standing in
process of drug discovery and development. This
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information will prove beneficial to pick top molecules
and push them forward in the process of drug
discovery.

Cytotoxic compounds isolated from fungi from
1964 to 2013 are mentioned in a review published in
2014, with the key focus upon the mechanism of
action of 18 molecules out of the total described 51
molecules.[10] Plinabulin NPI-2358 (Phase III) and PX-
866, a wortmannin synthetic analog (Phase II) are
leading in process of drug discovery while other fungal
metabolites like anguidine, aphidicolin, rhizoxin, fuma-
gillin, illudin S, phenylahistin, and their synthetic
derivatives have reached up to initial stages of clinical
trials.[11,12] This review aims to cover a thorough
assessment of fungal secondary metabolites having
anti-cancer activity reported from endolichenic fungi,
endophytic fungi, marine fungi, and terrestrial fungi
from January 2014 to June 2021. Three categories
have been created such as potent (IC50 below 1 μM)
moderately potent (IC50 1–5 μM), and less potent (IC50
5–10 μM). In total, 176 cytotoxic molecules belonging
to various classes like alkaloids, terpenoids, polyke-
tides, and macrolide etc., have been represented
graphically in Figure 1. Endophytic fungi have largely
contributed towards the anti-cancer molecules (117)
which were followed by marine fungi (39).

The data analysis revealed 42 molecules (enlisted in
Table 1) have shown potent anti-cancer activity, 80

molecules showed moderate activity and 54 molecules
were having IC50 between 5–10 μM. The details are
given in the supplementary file (Table S1 and S2).
These tables contain information like the name of
fungi, compound name, cell lines, and IC50. Potent
molecules have been segregated into various classes
such as penicilazaphilones, alkaloids, ophiobolins,
macrolides, terpenoids, azanthraquinone, and miscella-
neous. The available information on these molecules
such as the mechanism of action, structural activity
relationship, scaffold chemistry along with yield and
fungal growth conditions have been critically analyzed
and included in this review. The search engines like Sci
Finder, Google Scholar, PubMed, and PubChem have
been used to fetch the data of the discussed
molecules.

Penicilazaphilones

Azaphilones are polyketide derivatives with pyrone-
quinone structures containing an oxygenated bicyclic
core and achiral quaternary center.[47] The biosynthesis
of azaphilone in fungi is associated with polyketide
and fatty acid synthesis pathways. Penicilazaphilones
have been isolated from marine fungus Penicillium
sclerotiorum M-22 with 19.85 mg/L yield. Here, the
culture conditions have been optimized by response

Figure 1. Cytotoxic compounds belonging to different chemical classes and their fungal origin since January 2014–June 2021.
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surface methodology to achieve this yield. Penicilaza-
philones B (1) and C (2) (Figure 2) have shown potent
cytotoxicity against melanoma cells B-16 with IC50 0.29
and 0.06 μM, respectively.[13] These molecules have
also shown less than 1 μM IC50 against human gastric
cancer cells SGC7901 and reported to induce dephos-
phorylation of AKT and block the notch signalling
pathway. An in vivo experiment using BALB/c-nude
mice inoculated with MGC-803 and SGC-7901 cells
demonstrated that compound 2 was effective in vivo
as it significantly suppressed tumor growth (250 mm3

tumor volume) compared to that in the control group
(600 mm3 tumor volume).[48]

Alkaloids

Disulfide Bridged Alkaloids

Epipolythiodioxopiperazines (ETP), polysulfide bridged
diketopiperazine alkaloids represent a unique class of
secondary metabolites produced by fungi with a
diketopiperazine core and a sulfur bridge. The first ETP
compound gliotoxin was reported in 1936 from
Trichoderma fungi.[49] Sulfur bridges in the ETP
alkaloids are highly reactive, photosensitive, and also a
proposed site that contributes to its activity.[50] 6-
formamide-chetomin (3) is an ETP showed potent
cytotoxicity against SGC-7901, HeLa and A549 with
IC50 0.023, 0.006, 0.0271 μM, respectively. This com-
pound was isolated from the endophytic fungus
Chaetomium sp. M336 cultured on potato dextrose
agar with percentage extractive yield 0.02% w/w.[24] A
large scale production method of these photosensitive
ETPs from fungus belonging to genus Capreolus has
been patented mentioning its fermentation using solid
rice medium with purification by column
chromatography.[51]

Penicisulfuranols (A–F) were isolated from man-
grove endophytic fungus Penicillium janthinellum
HDN13-309, out of which Penicisulfuranol A (4) and C
(5) (Figure 3) showed potent cytotoxic activity through

inhibition of C-terminal of Hsp-90 heat shock
protein.[52] The percentage extractive yield of (4) and
(5) was 0.25% w/w and 0.23% w/w, respectively.[31] A
synthetic method has been developed recently for the
production of penicisulfuranols from 2,5-diketopiper-
azine (DKP) using molybdenum mediated oxidation.[53]

Brocazine F (6), a bisthiodiketopiperazine derivative is
another potent molecule from a marine endophytic
fungus, Penicillium brocae MA-231 found in the
mangrove plant Avicennia marina. Six brocazine de-
rivative A-F possessing disulfide bridge were isolated
from this fungus and four of them were evaluated for
cytotoxicity against different cancer cell lines like
Du145, HeLa, HepG2, MCF-7, NCI-H460, SGC-7901,
SW1990, SW480, and U251. Among all, brocazine F (6)
has shown potent antitumor activity at 0.89 μM (IC50)
against the NCI-H460. The percentage extractive yield
of brocazine F was found to be 0.29% w/w.[17]

Emestrin B (7) is also an example of cytotoxic ETP
alkaloid which was initially isolated from the marine
fungus Emericella nidulans. It is also found in other
fungi such as E. striata, E. foveolata, E. quadrilineata,
etc.[15] This compound have been tested against T47D,
HeLa, and WiDr and the best activity was observed
toward T47D cells (breast cancer) with IC50 of 0.25 μM.
Flow cytometry analysis showed this compound
induced apoptosis in T47D cells.[15] The mechanism of
toxicity of compound 7 was found to be deformation
of the mitochondrial structure by inhibiting the ATP
synthesis by uncoupling of oxidative phosphorylation
along with depression of respiration in isolated
mitochondria.[54]

Pyridone Alkaloids

In fungi, polyketides (PKs) and nonribosomal peptides
(NRPs) are involved in the biosynthesis of pyridone
alkaloids which are present in the tetracyclic or
tricyclic form.[55,56] Chaunolidone A (8), a pyridinone
was isolated from marine fungus Chaunopycnis sp.
(CMB-MF028) along with its analogs. The isolated

Figure 2. Cytotoxic penicilazaphilones (IC50 <1 μM) from fungus (2014–2021).
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molecules were tested against human colorectal
adenocarcinoma (SW620), non-small cell lung carcino-
ma (NCI-H460), and cervical carcinoma (KB3-1). This
compound 8 has shown selective inhibitory activity
against human non-small cell lung carcinoma cells
with IC50 0.09 μM. The percentage extractive yield of
(8) was 0.38% w/w.[14] Further, N-hydroxy-apiospora-
mide (9) was isolated from lichen Cladonia sp.
associated fungus Apiospora montagnei which was
grown on rice media. The percentage extractive yield
of compound 9 was found to be 0.56% w/w.
Compound 9 has demonstrated an excellent inhibitory
action at 0.2 μM against L5175Y mouse lymphoma
cells.[22]

Orbiocrellin B (10) from pathogenic fungus Orbioc-
rella sp. BCC 33248 found in Coccoidea insect Hemi-
ptera have shown potent cytotoxicity (IC50 =0.77 μM)
against NCI-H187 cells. The obtained yield was 0.12%
w/w when fermented under static conditions for
33 days at 25 °C with M102 medium. In total, six
molecules were isolated from this fungus which
belongs to N-hydroxypyridone alkaloids, chromone
derivatives, and tetrahydroxanthones. The cytotoxicity

of these molecules were tested on NCI-H187 cells,
MCF-7 and KB cells (Table 1; Figure 4).[19]

Terpenoids

Ophiobolins

Ophiobolins are sesterterpenoids containing tricyclic
5-8-5 carbotricyclic skeleton and these compounds
were first reported from Bipolaris sp.[57] Initially
ophiobolins were known to be phytotoxins as it seems
to produce disease syndrome in plants. From 1999 to
2016, many ophiobolins have been reported including
their subtype/derivative which is further divided into
various subgroups. Most of them were isolated from
the genus Aspergillus and Bipolaris. It has been
observed that more than 50% of ophiobolins showed
anti-cancer activity. Among those, ophiobolin A is a
potent anti-cancer molecule active against 26 human
cancer cell lines. It was also found to be active in
mouse GBM (glioblastoma multiforme) and melanoma
models. The structure-activity relationship study of
ophiobolin A revealed important structural features
such as a) configuration at C-6 position, b) attachment

Figure 3. Cytotoxic disulfide bridged diketopiperazine alkaloids (IC50 <1 μM) from fungus (2014–2021).
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of hydroxy group at C-3, C-6 and C-14 position, and c)
position of tetrahydrofuran ring in between C-14 to C-
17 and C-5 to C-21 position. The findings suggested
that the hydroxy group at C-6 position showed 8–
9 times greater efficiency in inhibiting the growth of
both K562 and HepG2 cells and the tetrahydrofuran
ring between C-5 to C-21 suppressed the cytotoxic
activity. The reported mechanism of action is via
apoptosis, necrosis, and paraptosis but detailed inves-
tigations are needed.[58] In this review, we have
covered the cytotoxic ophiobolins reported after 2014
including ophiobolins X, ophiobolins Y, 21-dehydro-
ophiobolin U, ophiobolin Z, 21-epi-ophiobolin Z, 21-
epi-ophiobolin O and 21-deoxyophiobolin K from
mangrove fungi Aspergillus ustus 094102. These com-
pounds were tested against G3K, MD-MBA-231, MCF-7,
MCF-7/Adr, A549, HL-60 and 21-epi-ophiobolin O (11)
found to be potent against A549, HL-60 with IC50 value
0.6 and 0.8 μM, respectively. The percentage extractive
yield of compound 11 was 0.008% w/w.[46]

Further, Aspergillus flocculosus, a marine fungus
when cultured on rice media for three weeks lead to
the isolation of five ophiobolins, 14,15-dehydro-6-epi-
ophiobolin K, 14,15-dehydroophiobolin K, 14,15-dehy-
dro-6-epi-ophiobolin G, 14,15-dehydroophiobolin G,
14,15-dehydro-(Z)-14-ophiobolin G. All the compounds

were tested against HCT-15, NUGC-3, NCI-H23, ACHN,
PC-3, MDA-MB-235 cancer cell lines and 14,15-dehy-
dro-6-epi-ophiobolin K (12) and 14,15-dehydro-ophio-
bolin K (13) showed potent activity against tested
cancer cell lines (Table 1). While, 14,15-dehydro-6-epi-
ophiobolin G (14) was active against HCT-15, and
NUGC-3 cell lines with IC50 0.96 and 0.88 μM, respec-
tively. The percentage extractive yield of 12, 13 and
14 were found to be 0.03% w/w, 0.006% w/w, and
0.01% w/w, respectively. (Table 1; Figure 5)[18]

Sesquiterpenes

Sesquiterpenes having three isoprene units are well-
known for their anticancer properties.[59] Aspergillu-
sone D (15) is a candinane type sesquiterpenoid
(Figure 6) that has shown potent cytotoxic activity
against A549. This compound was isolated from an
endophytic fungus Aspergillus clavatus.[29] There are 20
sesquiterpenes reported from endophytic fungus
Pseudolagarobasidium acaciicola from tree Bruguiera
gymnorrhiz. All these compounds were screened for
cytotoxic activity against HuCCA-1, A549, MOLT-3,
HepG2, HL-60, MDA-MB231, T47D, HeLa, MRC-5 and
among all, 7-epi-merulin B (16) showed potent
response against HL-60 with IC50 0.28 μM.[30] Similarly,

Figure 4. Cytotoxic pyridone alkaloids (IC50 <1 μM) from fungus (2014–2021).

Figure 5. Cytotoxic ophiobolins (IC50 <1 μM) from fungus (2014–2021).
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epoxyphomalin analog named 11-dehydroxy epoxy-
phomalin A (17) from endophytic fungus Peyronellaea
coffeae-arabicae FT238 of Pritchardia lowreyana plant
showed IC50 value 0.5 μM against the OVCAR3 cell
lines.[32] Chondrosterins I & J have been extracted from
Chondrostereum sp. residing in the tissue of soft coral
Sarcophyton tortuosum. Out of which, chondrosterins J
(18) showed potent inhibitory activity against CNE-1
and CNE-2 cancerous cell lines.[16] The yield of 18 was
found to be 0.05% w/w. An enantioselective total
synthesis of 18 via intermolecular aldol reaction has
been reported with 19.4% yield.[60]

Triterpenoids

Triterpenoid is a major class of Natural Products
having over 20,000 known members. Squalene is a 30
carbon intermediate initiating with isopentenyl pyro-

phosphate leading to triterpenoids which include
protostanes, lanostanes, holostanes, cycloartanes,
dammaranes, euphanes, tirucallanes, tetranortriterpe-
noids, quassinoids, lupanes, oleananes, friedelanes,
ursanes, hopanes, isomalabaricanes, and saponins.[61]

Integracides F (19) and G (20) have shown potent
cytotoxicity against SKOV-3 at IC50 0.23 and, 0.17 μM,
respectively (Figure 7). These tetracyclic triterpenoids
were isolated from endophytic fungi Fusarium sp.
grown on rice containing media. This fungus was
found in the roots of Mentha longifolia L. collected
from Saudi Arabia.[27] In 2016, integracides H� J were
isolated from the same fungus Fusarium sp. among
which, integracides H (21) showed potent growth
inhibitory activity against BT-549, SKOV-3, KB cell lines
at IC50 values 1.82, 1.32, 0.18 μM, respectively. In this
study, doxorubicin (IC50 value 2.54 μM) was used as a
positive control.[28]

Figure 6. Cytotoxic sesquiterpenes (IC50 <1 μM) from fungus (2014–2021).

Figure 7. Cytotoxic triterpenoids (IC50 <1 μM) from fungus (2014–2021).
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Azanthraquinones

Cytotoxic anthraquinones, Torrubiellins A & B were
initially found in the endophytic fungus Torrubiella sp.
Bcc 28517.[62] Later, in 2015, Torrubiellin B (22) was
extracted from Acremonium sp. from plant Sonneratia
caseolaris. This fungus was cultured for 4 weeks using
a solid rice medium leading to the 2% w/w extractive
yield of 22 which was greater than the earlier
Torrubiella sp. Bcc 28517 culture (0.46% w/w). Com-
pound 22 was evaluated for anti-cancer activity
against several cancerous cell lines like Cal27, Kyse510,
HCC38, MDA-MB-231, A2780 and found potent against
Cal27, HCC38, A2780 with IC50 0.3, 0.4, 0.3 μM,
respectively, in comparison to standard cisplatin,
which showed IC50 2.9, 3.5, 1.5 μM against the same
cell lines.[41]

Further, 7-Desmethylscorpinone (23) and 7-
desmethyl-6-methylbostrycoidin (24) from endophytic
fungus Fusarium solani have shown potent cytotox-
icity. The fungus was isolated from the roots of
Aponogeton undulatus Roxb found in Natore, Bangla-
desh in 2013. The percentage extractive yield of 23
and 24 was 0.11% w/w and 0.16% w/w, respectively.
The cytotoxic effect of these compounds was studied
against HeLa cervical carcinoma, MIA paca2, MDA MB
231 breast cancer, NCI H1975, and WI38. Compound
23 was found active against HeLa cervical carcinoma,
MIA paca2, and NCI H1975 with IC50 value 0.96, 0.98,
0.61 μM, respectively. Compound 24 was found to be
active against HeLa cervical carcinoma, MIA paca2,
MDA MB 231 breast cancer, NCI H1975 with IC50 value
0.71, 0.73, 0.64, 0.34 μM, respectively. An in-silico study
showed the ability of 23 and 24 to construct a stable
complex with mixed AT/GC DNA sequences with
binding energies of � 8.3 and � 7.9 kcal/mol, respec-
tively. However, further mechanistic studies are
needed to reconfirm the abilities of 23 and 24 to
intercalate DNA to produce toxicity against cancerous
cell lines.[44] Variecolortides isolated from Eurotium sp.,
an endolichenic fungal strain present in lichen Cladina
grisea have potential as an anti-cancer agent. Racemic
mixture of variecolortide B (25a and 25b) (Figure 8)
have shown potent inhibitory caspase-3 activity (IC50
0.8�0.2 μM) but has a poor percentage extractive
yield (0.06% w/w).[23]

Macrolides

Macrolides are the largest subgroup of the polyketide
class of Natural Products having acyl-CoA as a

precursor.[63] Epiroridine acid (26), a trichothecene
macrolide, has shown potent cytotoxicity against SF-
268, MCF-7, NCI-H460, HepG-2 cell lines with IC50
values of 0.751, 0.170, 0.360, 0.38 μM, respectively.
This compound was isolated from endophytic fungus
Myrothecium roridum A553 (yield-0.27% w/w) obtained
from plant Pogostemon roridum A553.[45] The mecha-
nistic studies carried out on the HepG-2 cell lines
showed that 26 induces apoptosis via activation of
caspase-3 and caspase-9. Also, it leads to disruption of
the mitochondrial membrane along with up-regulation
of Bax gene expression, down-regulation of Bcl-2 gene
expression.[64]

7-O-methylnigrosporolide (27), a 14-member mac-
rolide, was isolated from endophytic fungi Pestalotiop-
sis microspore from fruit Drepanocarpus lunatus (Faba-
ceae) having yield 0.01% w/w. This macrolide was
screened against the human ovarian cancer cell lines
A2780 and mouse lymphoma cell lines L5178Y and
showed potent activity against lymphoma cells with
IC50 0.7 μM.[35] A 13 step total synthesis method has
been reported for the preparation of 27 with the
starting material D-mannitol and 5-hexenol leading to
10.5% w/w yield (Table 1; Figure 9).[65]

Miscellaneous

An investigation of endophytic fungus Penicillium sp.
FJ-1 of Avicennia marina revealed two antitumor
molecules namely 15-hydroxy-6α,12-epoxy-
7β,10αH,11βH-spiroax-4-ene-12-one (HESEO) (28) and
4-(2’,3’-dihydroxy-3’-methylbutanoxy)phenethanol.
Both were tested against the Human lingual carcinoma
cell lines (Tca8113), Osteosarcoma cell lines (MG-63),
and human liver cell lines (WRL-68). The potent
antiproliferative activity of 28 was observed against
the MG-63 cell lines with IC50 0.055 μM.[25] The
percentage extractive yield of 28 was 0.05% w/w.
HESEO induces apoptosis of MG-63 through increasing
expression of NF-KB p-P65 and PUMA, and mitochon-
drial dysfunction.[66] PM181110 (29), a depsipeptide
has shown an interesting cytotoxic profile and tested
against 40 human tumor cell lines including cells of
various organs like bladder, colon, head and neck,
lung, mammary, melanoma, ovarian, pancreas, pleur-
amesothelioma, renal, sarcoma, and uterus. It was
highlighted that pancreatic cancer cells (PAXF 546L)
and lungs cancer cells (LXFA 526L) were highly
sensitive towards compound 29 with IC50 0.016 and
0.021 μM. It was further screened ex vivo against 24
human tumor xenografts models and found to be
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potent against bladder cancer BXF 1218 with IC50
0.03 μM. However, in vivo studies showed no antitu-
mor activity which needs to be confirmed by changing

dose regimens and formulations. Compound 29 was
isolated from fungi PM0509732 obtained from the

Figure 8. Cytotoxic azanthroquinone (IC50 <1 μM) from fungus (2014–2021).

Figure 9. Cytotoxic macrolides (IC50 <1 μM) from fungus (2014–2021).
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tissue leaves of Pongamia pinnata (L) with 4% w/w
extractive yield.[26]

Rhytidenone H (30), a spirobisnapthalenes type of
compound obtained from the mangrove associated
fungi Rhytidhysteron rufulum AS21B showed potent
inhibitory activity against Ramos and H1975 cell lines
at IC50 values 0.018 and 0.252 μM, respectively. The
yield of compound 30 was found to be 0.03% w/w.[40]

A benzamide derivative, fusarithioamide A (31) was
isolated from fungi Fusarium chlamydosporium resid-
ing in the leaves of Anvillea garcinii (yield-0.12% w/w).
This compound was tested on KB, BT-549, SK-MEL, and
SKOV-3 cell lines and found to be potent against BT-
549 and SKOV-3 with IC50 0.4 and 0.8 μM, respectively.
The positive control was doxorubicin.[42] Further inves-
tigation of this fungi resulted in potent fusarithioa-
mide B (32) with a yield of 0.05% w/w.[42] Emericellip-
sin A (33) is a lipopeptaibol type compound isolated
from soil fungi Emericellopsis alkalina. The compound
exhibited a potent cytotoxic effect on HeLa cell lines
with EC50 <0.5 μM.[20] A cyclic pentapeptide, disul-
phide cyclo-(Leu-Val-Ile-Cys-Cys) named Malformin E
(34) has shown remarkable cytotoxicity against the
MCF-7 cell lines with IC50 value 0.65 μM which is
reported from the endophytic fungus Aspergillus
tamari from roots of Ficus carica. The yield of 34 was
found to be 0.02% w/w.[33]

α-Pyrone derivatives named phomones have
shown anti-cancer properties. Phomone C–F were
isolated with 4% w/w yield from endophytic fungus
Phoma sp. YN02-P-3 from plant Sumbaviopsis albicans
J. Out of these compounds, phomone D (35) was
found to be potent against the HL-60 cell lines with
IC50 0.65 μM. The structural activity relationship of 35
revealed that the acetyl group at the 10th and 12th

positions play a dominant role in inhibitory activity
against cancerous cells (Table 1; Figure 10).[34] Macro-
phin (36) was discovered from a fungus Phoma
macrostoma residing inside the tissue of the plant
Glycyrrhiza glabra Linn. The yield of 36 was 8.08%
w/w. This compound (36) was found to be potent
pancreatic cancer with IC50 0.9 μM. Based on several
mechanistic studies of 36, it was hypothesized that
programmed dysregulated cell death occurs in cancer-
ous cells is due to apoptosis by S phase arrest.[37] A
study on Alternaria phragmospora, an endophytic fungi
resulted into isolation of four molecules named as 5-
butyl-4-methoxy-6-methyl-2H-pyran-2-one, 5-(1-hy-
droxybutyl)-4-methoxy-6-methyl-2H-pyran-2-one,4-
methoxy-6-methyl-5-(3-oxobutyl)-2H-pyran-2-one, and
4-hydroxy-6-methyl-5-(3-oxobutyl)-2H-pyran-2-one. All
compounds were screened for their growth inhibitory

activity against HL-60 and K562 and among all, 4-
methoxy-6-methyl-5-(3-oxobutyl)-2H-pyran-2-one (37)
showed anti-cancer activity at IC50 0.9 μM against HL-
60. The yield of compound 37 was 0.03% w/w.[36] A
five steps synthetic method for preparation of 37 has
been reported from 4-hydroxy-5-methoxycarbonyl-6-
methyl-2-pyrone.[67]

An additional potent cytotoxic molecule, 3-epi-waol
A (38), a γ-lactone extracted from fungus Libertella
blepharis found in the inner tissue of leaf of Olyra
latifolio. The yield of compound 38 was 0.03% w/w.
Compound 38 was evaluated against 12 cell lines
includes showing inhibitory activity against H460 with
an IC50 value of 1.0 μM.[38] Phialomustins A–D, azaphi-
lone derivatives, have been isolated from endophytic
fungi Phialophora mustea from plant Crocus sativus.
Antiproliferative activity of phialomustins was checked
against pancreatic, lung, colon, and human breast
cancer cell lines using MTT assay and found phialo-
mustins B (39) as a potent molecule with IC50 1.0 μM.
The yield of compound 39 was 8.33% w/w.[39]

Myceliothermophins polyketide-amino acid hybrid nat-
ural compounds were isolated from Thermothelomyces
thermophilus ATCC 42464. Myceliothermophins A (40),
E (41), and F (42) showed potent toxicity against DLD-
1, Hep3B, and HGC-27 cell lines.[21]

Discussion

A review on cytotoxic fungal metabolites from 1964 to
2013 has very finely explained the role of fungi in anti-
cancer discovery highlighting potential cytotoxic mol-
ecules like cytochalasins, fusicoccin A, ophiobolins,
ophiobolin O, ophiobolin A, phyllostictin A, tryprosta-
tins, tryprostatin A, halenaquinones, TAN1496 A–E,
gliotoxins, macrosphelide, cordycepin, panepoxydone,
cycloepoxydone, oxaspirodion, caffeic acid phenethyl
ester.[11] This review has described molecules having
in-vitro IC50 value below 1 μM and isolated from the
fungal origin after 2014. This report describes 42
potent molecules, out of which 9 are from marine
fungus, 2 from endolichenic fungi, 5 from terrestrial
fungi and 26 from endophytic fungi. All the available
data of these molecules are described including their
source, scaffold chemistry, percentage extractive yield,
fermentation conditions, mechanism of action and
structure-activity details.

The comprehensive analysis of these compounds
showed that maximum data required for the drug
discovery process is available for penicisulfuranol A (4),
a disulfide bridged alkaloid, which has shown potent

Chem. Biodiversity 2022, 19, e202100976

www.cb.wiley.com (12 of 17) e202100976 © 2022 Wiley-VHCA AG, Zurich, Switzerland

Wiley VCH Montag, 21.03.2022

2299 / 241606 [S. 12/17] 1

www.cb.wiley.com


Figure 10. Cytotoxic compounds belong to miscellaneous group (IC50 <1 μM) from fungus (2014–2021).
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in-vitro cytotoxicity against HeLa (IC50 =0.5 μM) and
HL60 (IC50 =0.1 μM) cell lines. It acts through inhibiting
the C-terminal of HSP-90 heat shock protein. A
synthetic method using molybdenum mediated oxida-
tion has been developed for the production of this
molecule (4). So, this molecule should be given priority
and further evaluated via in vivo study and toxicity
studies to proceed further in the drug discovery
pipeline. Penicilazaphilone C (2) is another candidate
from this structural class which has shown cytotoxic
activity against human gastric cancer cells SGC7901
with IC50 value 0.72 μM and significant tumor reduc-
tion in tumor induced BALB/c-nude mice, in vivo
model. The molecule (2) acts via blocking the notch
signalling pathway which is one of the key pathway in
deciding the cell fate. However, further studies like
pharmacokinetic and toxicity profiling along with
formulation development are still pending.

Ophiobolins are also an interesting class of secon-
dary metabolites mostly produced by Aspergillus and
Bipolaris species. A comprehensive report of Ophiobo-
lin A and its derivatives has been given earlier.[68] 21-
epi-ophiobolin O (11) has shown promising anticancer
activity against adenocarcinoma and promyelocytic
leukemia and detailed evaluations need to be carried
out to exploit its full potential. In addition, 6
formamide chetomin, PM181110, N-hydroxyapiospor-
amide, 15-hydroxy-6α,12-epoxy-7β,10αH,11βH-spi-
roax-4-ene-12-one have shown potent in-vitro activity
and should be thoroughly assessed by studies like
in vivo evaluation, SAR, pharmacokinetic, toxicity, for-
mulation aspects and clinical studies to convert them
into leading anticancer drugs.

It is evident that in the last 8 years number of
cytotoxic molecules have been reported from the
fungal origin and the potent ones are elaborated in
this report. Most of the potent compounds are isolated
from endophytic fungi indicating their significant role
in plant species with the hypothesis that either they
produce these cytotoxic molecules to compete with
other microorganisms or to support plants for their
survival. Though the role of these compounds is not
clear, it gives insights to researchers for the discovery
of new drugs and in a few cases to find new targets
for particular diseases specifically cancer.
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