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Abstract - Automated inspection of surface defects is 
beneficial for casting product manufacturers in terms of 
inspection cost and time, which ultimately affect overall 
business performance. Intelligent systems that are capable of 
image classification are widely applied in visual inspection as 
a major component of modern smart manufacturing. Image 
classification tasks performed by Convolutional Neural 
Networks (CNNs) have recently shown significant 
performance over the conventional machine learning 
techniques. Particularly, AlexNet CNN architecture, which 
was proposed at the early stages of the development of CNN 
architectures, shows outstanding performance. In this paper, 
we investigate the application of AlexNet CNN architecture-
based transfer learning for the classification of casting surface 
defects. We used a dataset containing casting surface defect 
images of a pump impeller for testing the performance. We 
examined four experimental schemes where the degree of the 
knowledge obtained from the pre-trained model is varied in 
each experiment. Furthermore, using a simple grid search 
method we explored the best overall setting for two crucial 
hyperparameters. Our results show that despite the simple 
architecture, AlexNet with transfer learning can be 
successfully applied for the recognition of casting surface 
defects of the pump impeller.  

Keywords - automated inspection, casting defect detection, 
convolutional neural networks, hyperparameters, transfer 
learning 

I. INTRODUCTION 

Cost and time effective quality management [1] in a 
manufacturing operation is a significant aspect regardless of 
the domain. Nevertheless, producing higher quality 
products that yield higher customer satisfaction with the 
least cost and time has been a challenging task for 
manufacturing firms.  Product visual inspection for defects, 
being a crucial element in quality management, is 
increasingly automated in present manufacturing firms due 
to numerous benefits [2] which ultimately result in higher 
business performance.  

Metal casting is a manufacturing process where molten 
metals are solidified in a mold to obtain the required shape 
[3]. Though metal casting processes span across a wide 
variety of metals and several specific techniques, the most 
common defect types can be categorized as blowholes, 
shrinkages, cracks, sand inclusions, defective surfaces, and 
mismatches [4]. Proper identification of casting defects 
effectively is vital as unnoticed defective finished products 
which go to the customers’ hand can cause fatal mechanical 
failures [5].  Automating the process of visual inspection of 
metal castings with the aid of intelligent systems [6] is 
beneficial in terms of accuracy, inspection time, and cost.  
Especially, it prevents the facilitation of human labor in 

hazardous environments including costly concerns of the 
safety of such employees.  

The visual identification process of defects in metal 
castings needs to entertain two main requirements during 
the process of inspection. One is the identification of surface 
defects on the casting, and two is the identification of 
defects located inside the cast product which are not visible 
to the naked eye. The latter is relatively complicated and 
expensive, commonly accomplished by non-destructive 
testing (NDT) methods such as ultrasonic testing, eddy-
current testing, magnetic particle testing, and radiographic 
(X-ray) testing [7].  

The main purpose of non-destructive testing is to 
identify defects located inside the test object by the naked 
eye without damaging the object. X-ray computer 
tomography (XCT) is a widely used non-destructive casting 
inspection method that generates two-dimensional/three-
dimensional images of the object interior structure [8]. 
Inspecting such interior images along with the inspection of 
casting surfaces of every manufactured product is necessary 
to maintain lower defect levels. Not only the interior images 
generated by XCT but also the conventional photographs of 
the casting surfaces can be fed into intelligent systems that 
use image processing and machine learning techniques for 
recognition, categorization, and localization of casting 
defects [6].   

Convolutional neural networks (CNNs), which lie in 
the domain of machine learning have been well studied for 
their appropriateness in computer vision applications [9]. 
The structure of CNNs is analogous to that of the 
connectivity pattern in the visual cortex of the human brain. 
CNNs are capable of extracting features by themselves and 
there is no need to perform manual feature extractions in the 
input images which, however, is essential in some primitive 
machine learning techniques. Fig. 1 illustrates the 
difference in image classification approach between 
primitive machine learning methods and CNNs. Hence, 
over the last decade, CNNs have successfully applied for 
automated inspection of casting defects with varying 
performances [10]–[12]. Since the onset of the CNNs, 
numerous architectures have been generated by carrying out 
structural reformulations, regularizations, parameter 
optimizations, etc. [13]. AlexNet [14] is a prominent CNN 
architecture that performs competently in the tasks of image 
recognition. While CNNs perform better in the realm of 
images over traditional machine learning techniques still 
some common hindrances for lack of generalization of 
models are not fully conquered by research. Specifically, 
models trained for the same feature space and the same 
distribution drastically reduce their performance when 
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tested on a different dataset with different feature 
distribution. 

 
 

Fig. 1. Difference in image classification approach between conventional 

machine learning techniques and CNNs 

Transfer learning has significantly addressed the issue 
of using a single CNN model for the recognition tasks in 
different image fields. Transfer learning in CNNs is the use 
of knowledge gained by training a model in one domain, on 
another in a dissimilar domain [15]. It helps not only to 
mitigate the computational cost in training but also to 
generalize the CNN models over different domains. 
Moreover, transfer learning is beneficial in situations when 
adequate data is lacking for learning from scratch. Despite 
the successful applications of transfer learning in automated 
recognition of casting defects, selection of the unique CNN 
model parameters (hyperparameters) [16] relevant to each 
casting image dataset is still necessary.   

This paper focuses on: (1) investigating the application 
of an AlexNet CNN model which is pre-trained on an 
entirely different larger dataset to recognize images of 
casting surface defects, and (2) optimizing hyperparameters 
for best performance. The pivot of this study is a 
classification task to segregate faulty casting products in a 
manufactured batch through pattern recognition. Further 
classification of defect types or localization of defects, 
however, are out of the scope of this study. The dataset [17] 
used in the study comprised only two classes named ‘defect’ 
and ‘defect-free’ representing images with one or more 
defects, and images without any visible defect, respectively. 

II. RELATED WORK 

Recognition and localization of manufacturing defects 
using machine learning techniques are explored in 
numerous studies over the recent years with the focus of 
achieving high-performing robust models. Several 
primitive computer vision techniques were used by several 
authors at the early stages of the pattern recognition field. A 

background subtraction method followed by a thresholding 
algorithm is proposed in [18]. The idea is to generate an 
image with the same pixel intensities as the original image 
except defective regions using low-pass filtering [19]. The 
newly constructed image is then subtracted from the 
original image resulting in a residual image containing only 
defective regions.  In [20] the Modified Median filter, 
MODAN-Filter, is proposed to identify contours of the 
casting defects from non-defective areas with a function to 
calculate the pixel values of the background image. 
Furthermore, equations of the MODAN-Filter are 
generalized in [21] to achieve higher robustness.  These 
filtering-based methods that depend on optimum filter 
parameters, however, can be unreliable when image noise is 
present substantially. In [22], the wavelet transform method 
is described as a potential technique to identify certain 
casting defect types.  

Feature-based detection of casting defects is another 
trending approach that can be seen applied in [10], [23]. 
During this process, each pixel is classified as a defect or 
not based on the features calculated using sets of nearby 
pixels. Common features include statistical descriptors such 
as mean, standard deviation, skewness, kurtosis, energy, 
and entropy [24]. In [25], a hierarchical and a non-
hierarchical linear classifier has been implemented based on 
six geometric and gray value features namely contrast, 
position, aspect ratio, width-area ratio, length-area ratio, 
and roundness.  A Fuzzy logic-based method for the 
detection and classification of defects that appear in the 
radiographic images is proposed in [11]. 

Many modern studies have tested numerous CNN 
architectures in terms of the performance and accuracy of 
casting defect recognition tasks. Among those, Region-
Based Convolutional Neural Networks (R-CNNs) are used 
for the automatic localization of casting defects 
significantly [12]. R-CNNs are capable of setting bounding 
boxes around categorical patches in the images where this 
can be implemented easily to mark the defects in the casting 
defect images. In [10], a new CNN architecture called Xnet-
II is introduced which comprises five convolutional and 
fully connected layers. Moreover, they have used a dataset 
generated through simulation using Generative Adversarial 
Networks (GAN) [27] instead of real casting defect images.  

Lack of sufficient data is a common problem in the 
machine learning domain. Data augmentation where new 
images are generated by augmenting the existing images of 
casting defects efficiently and accurately with low 
background noise is proposed in [28]. This mechanism is 
based on a traditional image enlargement technique, 
precisely forcing the CNN to learn more in the regions of 
the image that need high attention in order to perform better 
in the classification task. On the other hand, transfer 
learning is effective not only in the lack of data scenarios 
but also in respective to the robustness of the model. In [5], 
the authors use ResNet CNN architecture for the recognition 
of casting defects. When compared to AlexNet, due to the 
architectural complexity, ResNet needs a significantly 
larger number of computations which ultimately consumes 
higher computational resources. 

III. METHODOLOGY 

In this section, we explain the approach used to 
recognize casting surface defects of an industrial product 
using AlexNet CNN architecture and transfer learning. 
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Improving the accuracy and the robustness of the AlexNet 
architecture using transfer learning in the context of casting 
defect detection is the major objective of this study. 

A. Description of the dataset 

The dataset, obtained from Kaggle datasets [17], 
consists of images of a submersible pump impeller which is 
manufactured as a casting product. All the images depict the 
top view of the impeller and belong to two classes. The 
images that exhibit at least one casting defect on the surface 
of the impeller are labeled as defect while all the other 
images, conversely, are labeled as defect-free. i.e., Any 
casting defect on the surface that cannot be identified by the 
naked eye from the images is labeled as defect-free.  

This dataset is collected under stable lighting 
conditions with a Canon EOS 1300D DSLR camera. The 
dataset contains  a total of 1300 gray-scaled images with the 
dimensions of each as (512×512) pixels. Among those, 781 
images are labeled as defect, and the remaining 519 images 
are labeled as defect-free. Fig. 2 shows eight sample images 
(size and the resolution is altered in order to adhere to paper 
guidelines) and corresponding labels which are randomly 
picked from the two classes. All the images acquired for this 
study from the original dataset are only the raw images and 
the augmentation is done as a part of this study. 

B. Image augmentation 

In this section, we discuss the image data augmentation 
techniques applied for the dataset before the 
experimentation. As in [29], several classical techniques 
that belong to geometrical and color-based transformations 
were applied randomly to yield higher variability. As per 
geometric transformations, rotation, shearing, mirroring, 
scaling (zoom-in/out) and translation were applied. 
Nevertheless, color space transformations were limited only 
to change of apparent brightness as the dataset already 
contains grayscale images. Moreover, apparent brightness 
change (performed randomly) in each pixel intensity of an 
image was restricted to a maximum of 20% (either increase 
or decrease) of the current intensity. It prevents introducing 
new defect regions which were not in the original image or 
disappearing significant regions of the image with low 
intensities by further decreasing the intensity.  

 

Fig. 3 shows one sample image (annotated as defect-
free) and corresponding images synthesized by augmenting 
that image using all the techniques used in this study. 

Among synthesized images, 5814 are annotated as defect-
free and 7668 are annotated as defects. At last, all the 
images were resized to (224×224) pixels. Throughout all the 
experimentation, training and validation data split is 
diversified by changing the amount of training data to 20%, 
40%, 50%, 60%, and 80% to understand the capacities of 
generalization of the used models [30].  Hereinafter, the 
ratio between the training image set and the validation 
image set will be referred as train-test split ratio. 

C. Non-parametric classification using the k-nearest 

neighbor algorithm 

K-Nearest Neighbor (KNN) algorithm, which is a basic 
supervised machine learning algorithm, is used to 
investigate the capability of performing the classification 
task using raw pixel intensities as the input and without any 
sophisticated feature extraction techniques. 

In the context of computer vision, the KNN algorithm 
performs classification of the data points (pixel values) 
based on the distance between them and with the 
assumption that  similar features exist nearby. Common 
methods of calculating the distance include the Euclidean 
distance: 

𝑑(𝑝, 𝑞) = √∑ (𝑞𝑖 − 𝑝𝑖)
2𝑁

𝑖−1   (1) 

and the Manhattan/city block distance: 

𝑑(𝑝, 𝑞) = ∑ |𝑞𝑖  −  𝑝𝑖|
𝑁
𝑖−1   (2) 

where 𝑑(𝑝, 𝑞) is the distance between two 𝑝 and 𝑞 points in 
the image spatial domain with N pixels. 

In this study, the KNN algorithm is performed with the 
raw pixel intensities of casting images without any feature 
extraction with the Manhattan distance calculation metric 
and the k value equals to five. The variation of precision, 
recall, and f1-score is observed by varying the train-test split 
ration. 

D. CNN architecture 

Despite the emerging CNN architectures, we base our 
model around AlexNet architecture due to three reasons. (1) 
To the best of our knowledge, application of AlexNet based 
transfer learning in recognition of casting defects is not 
addressed in past literature, (2) AlexNet is applied in a 
diverse set of deep learning problems witnessing promising 
results [30], [31], (3) AlexNet, which was proposed in 2012, 
is regarded as the first deep CNN architecture which 
showed pioneering results in image recognition and 
classification tasks [32]. We show that AlexNet is 
sufficiently deep and reliable for a modest classification of 
casting surface defects when compared to other deeper 
sophisticated architectures born after AlexNet, if 
hyperparameters are properly optimized.  

AlexNet consists of five 2D convolutional layers 
(Conv2D) followed by three fully connected layers (FC). 
The build of the AlexNet architecture is illustrated in Table 
I and it is constructed with several common CNN 
components 

 
 

Fig. 2.   Randomly picked eight number of sample images from the 

dataset annotated as defect and defect-free 
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a) Convolution layers 

Each convolutional layer consists of a set of filters 

known as convolutional kernels where each neuron plays 

the role of a kernel. The kernel is a matrix of integers where 

it will multiply its weights with corresponding values of a 

subset of pixels of the input image. The selected subset of 

pixels of the input image has a similar dimension to the 

kernel. Then, the resulting values are summed up to 

generate one value that represents the value of a pixel in 

the output (feature map). The kernel strides across the input 

image producing the output (feature map of the entire 

image) of the convolution layer. In each layer, the kernel 

strides over a varying number of pixels at a time in both 

dimensions (height and width). The convolution process 

can be mathematically expressed as [33]: 

𝑓𝑙
𝑘(𝑝, 𝑞) = ∑ ∑ 𝑖𝑐(𝑥, 𝑦). 𝑒𝑙

𝑘(𝑢, 𝑣)𝑥,𝑦𝑐   (3) 

where, 𝑖(𝑥, 𝑦) is an element of the input image tensor with 
𝑥 and 𝑦 coordinates, which is element-wise multiplied by 

𝑒(𝑢, 𝑣) index of the 𝑘𝑡ℎ  convolutional kernel of the  𝑙𝑡ℎ 
layer. 𝑢  and 𝑣  are the rows and columns of the kernel 
matrix. 𝑓(𝑝, 𝑞)  is the corresponding output feature map 
with 𝑝 columns and 𝑞  rows while 𝑐  is the image channel 
index. 

b) Pooling layers  

Pooling operation sums up identical information in the 
local region of the feature map generated by a 
convolutional layer and outputs a single value within that 
region [34]. AlexNet consists of three pooling layers 
followed by the first, second and last convolution layers. 

c) Activation function 

 Use of Rectified Linear Unit (ReLU) as a non-linear 

activation function of each layer is a significant 

characteristic in AlexNet. ReLU activation function is: 

𝑅(𝑧) = max (0, 𝑧)  (4) 

where 𝑧  is the function input and 𝑅(𝑧)  is the function 
output which equal to the input when the input is positive 
and equal to zero otherwise. 

d) Batch normalization 

As a countermeasure for the overfitting, batch 
normalization is performed after several layers of the 
AlexNet. 

 

e) Fully connected layer 

At the end of the feature extraction stage 
(accomplished by convolutional layers), three fully 
connected layers are introduced which perform 
classification globally [35]. 

f) Dropout 

To achieve generalization, some units or connections 
with a certain probability within the network are randomly 

Fig. 3.   Six transformations applied to a single original image (the symbols ‘x’ and ‘o’ in red color are used to understand the transformation in respect to the 

original image). Relevant transformation is labeled on top of the image. 

TABLE I.    LAYERS OF THE ALEXNET ARCHITECTURE 

ID Layer Type 

Layer Parameters (f=no. of 

feature maps, k=kernel size, 

s=strides, act=activation 

function) 

Size of 

Feature 

Map 

0 Input layer 
Input image size=(224x224) 

pixels, Channels=1 
 

1 Conv2D 
f=96, k=(11 x 11), s=4, 

act=ReLU 
555596 

2 Max Pool f=96, k=(3 x 3),  s=2, 272796 

3 
Batch 

normalization 
N/A 272796 

4 Conv2D 
f=256, k=(5 x 5), s=1, 

act=ReLU 
272796 

5 Max Pool f=256, k=(3 x 3), s=2, 1313256 

6 
Batch 

normalization 
N/A 1313256 

7 Conv2D 
f=384, k=(3 x 3), s=1, 

act=ReLU 
1313384 

8 
Batch 

normalization 
N/A 1313384 

9 Conv2D 
f=384, k=(3 x 3), s=1, 

act=ReLU 
1313384 

7 
Batch 

normalization 
N/A 1313384 

11 Conv2D 
f=256, k=(3 x 3), s=1, 

act=ReLU 
1313256 

12 Max Pool f=256, k=(3 x 3), s=2, 66256 

13 
Batch 

normalization 
N/A 66256 

14 Dropout Rate=0.5 66256 

15 FC f, k, s are N/A, act=ReLU 4096 

16 Dropout Rate=0.5 4096 

17 FC f, k, s are N/A, act=ReLU 1024 

18 Dropout Rate=0.5 1024 

19 FC f, k, s are N/A, act=softmax 2 
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skipped (dropout) [36]. The AlexNet model executes 
dropout after several fully connected layers in it. 

g) Output layer 

The final layer of AlexNet architecture which acts as 

the output layer uses the softmax activation function [37]. 

The softmax function is given by: 

𝑆(𝑦𝑖) =
𝑒𝑥𝑝 (𝑦𝑖)

∑ 𝑒𝑥𝑝 (𝑦𝑗)𝑛
𝑗=1

  (5) 

where 𝑦𝑖is the 𝑖𝑡ℎ element of the input vector, 𝑛 is the 
number of classes which, in our case is two–defect and 
defect-free. 

In our study, four modifications were carried out on the 
original AlexNet model creating an AlexNet variant. The 
modifications are: (1) Number of channels in the input 
convolutional layer is changed from three to one as our 
dataset consists of only grayscale images, (2) Dropout is 
imposed after each fully connected layer, (3) Batch 
normalization is performed after third and fourth 
convolutional layers, and (4) Number of output features of 
the second fully connected layer changed from 4096 to 
1024. 

E. Application of transfer learning and optimizing 

model   hyperparameters 

ImageNet dataset [38] is used for  pre-training of the 
AlexNet model and the influence of the transfer learning is 
tested using three experimental configurations (EC): 

• EC1: AlexNet is trained with the casting surface 
defect dataset without any pre-training with 
weights initialized randomly (training from 
scratch).  

• EC2: the same process in the previous 
configuration repeated, but the weights initialized 
with the ones found from the pre-trained model 
instead of random weights. 

• EC3: the exact weights of all the feature extraction 
layers pre-trained on the ImageNet dataset were 
used. 

• EC4: the entire model parameters (including both 
parameters of convolutional and fully connected 
layers) of the pre-trained model on the ImageNet 
dataset is used on the casting surface defect 
dataset. 

In each configuration, two types of hyperparameters 
including optimizer [39] and learning rate are optimized 
using the grid search method to achieve higher accuracy 
with modest robustness. In the grid search method, all the 
possible combinations of the selected hyperparameters are 
tested in multiple trials. The grid search methods suffers 
from the curse of dimensionality [40] where the number of 
trials grows exponentially with the increase of the number 
of hyperparameters. Nevertheless, the other sophisticated 
optimizations are not used as we obtained sufficient 
accuracies by varying only the two aforementioned 
hyperparameters. 

F. Implementation  

Training of the AlexNet model is accomplished using 
the Google Collaboratory tool–a free online python 
programming environment specially designed for machine 
learning tasks. CPU is composed of a single core hyper 
threaded Intel Xeon Processors at 2.3Ghz speed and 13GB 
RAM while GPU is a Tesla K80 GPU with a 12 GB 
GDDR5 VRAM.  

For the implementation of the AlexNet model and 
KNN, TensorFlow [41] and Scikit-learn [42] open-source 
tools are used. TensorFlow is an open-source framework 
designed for the implementation and experimentation of 
machine learning-related tasks while Scikit-learn is a high-
level machine learning library for python programming 
language. Furthermore, pre-trained models including the 
weights are acquired using PyTorch–an open-source deep 
learning framework [43]. 

 
All the experiments ran for ten epochs, where epochs 

are the number of training iterations where each neural 
network accomplishes one learning instance over the 
dataset. The selection of ten epochs is based on the 
empirical observation that conveys all the training in each 
experiment is always converged with ten epochs with 
optimal hyperparameters. 

 

IV. RESULTS AND DISCUSSIONS 

This section presents the results obtained by following 
the methods discussed in the previous section and related 
interpretations. 

A. Classification without learning 

The results of the KNN classification of the casting 
surface defect dataset are presented in this section. Table II 
shows precision, recall, and the f1-score corresponding to 
each class (defect and defect-free) obtained after 
performing the KNN algorithm with varying the train-test 
split ratio. With the reduction of the training set percentage, 
there is no significant gradual change in the accuracy as 
there is no learning that occurred during the training process 
by the KNN algorithm unlike the learning models discussed 
in this paper. 

The overall average accuracy of the classification of 
casting surface image data using the KNN algorithm is 
relatively lower when compared to the results of CNN 
models discussed in the future sections. This lower accuracy 
reveals that the classification using raw pixel intensities and 
their proximities to neighbor values in the casting surface 
defect images are not significant. This phenomenon 
discloses that all the images in each class are unique up to a 
certain extent in respect of pixel intensities which in return, 
induces the importance of the feature extraction. On the 

TABLE II.    PRECISION, RECALL AND F1-SCORE OF THE TWO CLASSES 

OBTAINED AFTER CLASSIFICATION USING KNN ALGORITHM 

 Defect Defect-free 

Test: 

Train 
Precision Recall 

F1-

Score 
Precision Recall 

F1-

Score 

0.2:0.8 0.86 0.87 0.88 0.86 0.81 0.83 

0.4:0.6 0.85 0.88 0.86 0.84 0.79 0.81 

0.6:0.4 0.85 0.88 0.86 0.84 0.79 0.81 

0.8:0.2 0.84 0.82 0.83 0.77 0.79 0.78 
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other hand, when observed with a perspective of the 
accuracies (i.e., All the accuracies are around 0.8 which is 
regarded as a significant performance in image 
classification tasks) it reveals that the image dataset has 
lower levels of noise. 

B. Classification with learning 

Classification endorsed by the application of CNNs 
manifested higher accuracies when compared to the 
classification performed by the KNN algorithm. Fig. 4 
illustrates the variation of accuracy with different train-test 
split ratios and different experimental configurations. 

For each experimental configuration, training accuracy 
(as shown in Fig. 4-a) is dropped when the training image 
portion decreases while increasing the number of validation 
images. In fact, demonstrating the common idea that lesser 
training in deep learning models causes lesser accuracies. 
Nevertheless, the size of the drop is negligible as all the 
accuracies are above 0.9 (or equal to 0.9) in each scenario. 
The highest overall accuracy is achieved when the training 
weights are initialized from the pre-trained model (EC2) 
instead of random initialization (EC1).  

 

 

 

 

 

 

 

 

 

 

 

 

Specifically, even with 20% training images, the use of 
the exact feature extractor of the pre-trained model for 
training (EC3) induced higher accuracy than training from 
scratch. In the instance where both feature extractor weights 
and classifier weights (weights of the fully connected 
layers) of the pre-trained model are used on training, an 
overall accuracy of 0.9 is achieved.  

On the contrary, validation process accuracy (as shown 
in Fig. 4-b) does not fluctuate considerably over the 
variation of train-test split ratio regardless of the 
experimental configurations except where training is done 
from scratch. All the transfer learning schemes (EC2, EC3, 
and EC4) show improved validation accuracies when 
compared to training from scratch (EC1) on the casting 
surface image dataset.  

Table III indicates the possible combinations of the 
hyperparameters used for the grid search method and 
related accuracies for EC3 with 20% of training images. 
During optimization of hyperparameters, first, we picked a 
random learning rate (0.0001) and performed a grid search 
with seven optimizer types. The best performance is gained 
by setting the optimizer to the RMSprop algorithm [39]. 
Fixing the optimizer as RMSprop algorithm, then we tested 
several learning rates which resulted in 0.0001 as the 
optimum value. Overall best hyperparameters (i.e., 
optimizer type and learning rate) found by the grid search 
method with the other hyperparameters found from the 
literature were standardized as shown in Table IV over the 
final run of each experiment. 

 

V. CONCLUSIONS AND FUTURE WORK 

Maintaining quality standards is vital in the casting 
product manufacturing industry for better business 

Fig. 4.   (a) and (b) are the accuracies of training process and the validation process, respectively over different experimental configurations (ECs) 

(which are mentioned under methodology of this paper) and varying train-test split ratios.  

TABLE III.    RESULTS OF THE GRID SEARCH METHOD PERFORMED TO 

FIND BEST OPTIMIZER AND LEARNING RATE 

Search 1: Learning Rate is Randomly Selected 

(=0.0001) and Fixed to Test Several Optimizer Types 

Learning 

Rate 
Optimizer 

Training 

accuracy 

Training time 

(seconds) 

0.0001 

Adam 0.94 742 

Adadelta 0.57 757 

AdamW 0.90 484 

Adamax 0.89 518 

ASGD 0.57 505 

RMSprop 0.93 635 

SGD 0.58 744 

Search 2: Best Optimizer (RMSprop) from Search 1 is 

Fixed and Tested Several Learning Rates 

Optimizer 
Learning 

rate 

Training 

accuracy 

Training time 

(seconds) 

RMSprop 

0.1 0.55 630 

0.01 0.57 634 

0.001 0.94 641 

0.0001 0.93 637 

0.00001 0.93 642 

 

TABLE IV.    OPTMIZED HYPERPARAMETER SETTINGS/VALUES  

STANDARIZED THROUGHT ALL EXPERIMENTS 

Hyperparameter Setting/Value 

Obtained with Grid Search 

(GS) Method/Using 

Literature (LT) 

Optimizer RMSprop GS 

Learning Rate 0.0001 GS 

Learning rate 

policy 

Step (decay 

over epoch) 
LT 

Momentum 0.9 LT 

Batch Size 16 LT 
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performance and for the safety of the end-users who 
consume products with critical mechanical components 
fabricated by casting. Automated inspection of casting 
defects leads to lesser inspection times and circumvents 
safety problems of employees working in hazardous 
environments. 

In this paper, we discussed the application of AlexNet 
CNN architecture-based transfer learning for automated 
inspection of surface defects of a submersible pump 
impeller manufactured by casting. Over the last decade, for 
the task of casting defect recognition, numerous 
sophisticated architectures were proposed with higher 
architectural complexity and better performance compared 
to the AlexNet architecture. Using the results of our study, 
we show (limited to the dataset used) that a simpler 
architecture like AlexNet can perform better when it is 
implemented with transfer learning and optimized model 
parameters. As future work, methods discussed in this study 
can be tested over other datasets containing images of 
casting surface defects of different products. 

Over the several experimental configurations tested, 
the use of the exact feature extractor of the pre-trained 
model for training demonstrated the best performance in 
terms of training accuracy and the training time (Although 
training with weights initialized from the pre-trained model 
resulted in the overall highest accuracy the training time is 
higher in contrast to using the entire feature extractor.  

Several recommendations for a casting surface defect 
detection system can be made based on the results of this 
study. Nevertheless, as future work, the practical usability 
of such a system needs to be tested prior to implementation 
as several dataset-specific parameters still need to be 
adjusted depending on the circumstance. The process of 
capturing the surface images of the casting products is vital 
including, but not limited to: (1) adhering to proper lighting 
conditions, and (2) maintaining unique and plain 
background when capturing. As shown in the results, 
transfer learning can be implemented to reduce the training 
time and enhance the robustness of the model. Moreover, 
transfer learning is beneficial when the number of training 
images is lower. Specifically, the use of a feature extractor 
from the pre-trained model and limiting the training only 
with the classification layers (fully connected layers) with 
casting defect data is advantageous instead of using all the 
parameters of the pre-trained model. Furthermore, fine-
tuning the model hyperparameters is crucial for obtaining 
better results. 
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