
Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

129

Paper No: SC-21 Smart Computing

Application of AlexNet convolutional neural
network architecture-based transfer learning for
automated recognition of casting surface defects

Shiron Thalagala*

Dept. of Electromechanical Engineering
University of Macau, China
shironceylon@gmail.com

Chamila Walgampaya

Dept. of Engineering Mathematics
University of Peradeniya, Sri Lanka

ckw@pdn.ac.lk

Abstract - Automated inspection of surface defects is
beneficial for casting product manufacturers in terms of
inspection cost and time, which ultimately affect overall
business performance. Intelligent systems that are capable of
image classification are widely applied in visual inspection as
a major component of modern smart manufacturing. Image
classification tasks performed by Convolutional Neural
Networks (CNNs) have recently shown significant
performance over the conventional machine learning
techniques. Particularly, AlexNet CNN architecture, which
was proposed at the early stages of the development of CNN
architectures, shows outstanding performance. In this paper,
we investigate the application of AlexNet CNN architecture-
based transfer learning for the classification of casting surface
defects. We used a dataset containing casting surface defect
images of a pump impeller for testing the performance. We
examined four experimental schemes where the degree of the
knowledge obtained from the pre-trained model is varied in
each experiment. Furthermore, using a simple grid search
method we explored the best overall setting for two crucial
hyperparameters. Our results show that despite the simple
architecture, AlexNet with transfer learning can be
successfully applied for the recognition of casting surface
defects of the pump impeller.

Keywords - automated inspection, casting defect detection,
convolutional neural networks, hyperparameters, transfer
learning

I. INTRODUCTION

Cost and time effective quality management [1] in a
manufacturing operation is a significant aspect regardless of
the domain. Nevertheless, producing higher quality
products that yield higher customer satisfaction with the
least cost and time has been a challenging task for
manufacturing firms. Product visual inspection for defects,
being a crucial element in quality management, is
increasingly automated in present manufacturing firms due
to numerous benefits [2] which ultimately result in higher
business performance.

Metal casting is a manufacturing process where molten
metals are solidified in a mold to obtain the required shape
[3]. Though metal casting processes span across a wide
variety of metals and several specific techniques, the most
common defect types can be categorized as blowholes,
shrinkages, cracks, sand inclusions, defective surfaces, and
mismatches [4]. Proper identification of casting defects
effectively is vital as unnoticed defective finished products
which go to the customers’ hand can cause fatal mechanical
failures [5]. Automating the process of visual inspection of
metal castings with the aid of intelligent systems [6] is
beneficial in terms of accuracy, inspection time, and cost.
Especially, it prevents the facilitation of human labor in

hazardous environments including costly concerns of the
safety of such employees.

The visual identification process of defects in metal
castings needs to entertain two main requirements during
the process of inspection. One is the identification of surface
defects on the casting, and two is the identification of
defects located inside the cast product which are not visible
to the naked eye. The latter is relatively complicated and
expensive, commonly accomplished by non-destructive
testing (NDT) methods such as ultrasonic testing, eddy-
current testing, magnetic particle testing, and radiographic
(X-ray) testing [7].

The main purpose of non-destructive testing is to
identify defects located inside the test object by the naked
eye without damaging the object. X-ray computer
tomography (XCT) is a widely used non-destructive casting
inspection method that generates two-dimensional/three-
dimensional images of the object interior structure [8].
Inspecting such interior images along with the inspection of
casting surfaces of every manufactured product is necessary
to maintain lower defect levels. Not only the interior images
generated by XCT but also the conventional photographs of
the casting surfaces can be fed into intelligent systems that
use image processing and machine learning techniques for
recognition, categorization, and localization of casting
defects [6].

Convolutional neural networks (CNNs), which lie in
the domain of machine learning have been well studied for
their appropriateness in computer vision applications [9].
The structure of CNNs is analogous to that of the
connectivity pattern in the visual cortex of the human brain.
CNNs are capable of extracting features by themselves and
there is no need to perform manual feature extractions in the
input images which, however, is essential in some primitive
machine learning techniques. Fig. 1 illustrates the
difference in image classification approach between
primitive machine learning methods and CNNs. Hence,
over the last decade, CNNs have successfully applied for
automated inspection of casting defects with varying
performances [10]–[12]. Since the onset of the CNNs,
numerous architectures have been generated by carrying out
structural reformulations, regularizations, parameter
optimizations, etc. [13]. AlexNet [14] is a prominent CNN
architecture that performs competently in the tasks of image
recognition. While CNNs perform better in the realm of
images over traditional machine learning techniques still
some common hindrances for lack of generalization of
models are not fully conquered by research. Specifically,
models trained for the same feature space and the same
distribution drastically reduce their performance when

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

130

tested on a different dataset with different feature
distribution.

Fig. 1. Difference in image classification approach between conventional

machine learning techniques and CNNs

Transfer learning has significantly addressed the issue
of using a single CNN model for the recognition tasks in
different image fields. Transfer learning in CNNs is the use
of knowledge gained by training a model in one domain, on
another in a dissimilar domain [15]. It helps not only to
mitigate the computational cost in training but also to
generalize the CNN models over different domains.
Moreover, transfer learning is beneficial in situations when
adequate data is lacking for learning from scratch. Despite
the successful applications of transfer learning in automated
recognition of casting defects, selection of the unique CNN
model parameters (hyperparameters) [16] relevant to each
casting image dataset is still necessary.

This paper focuses on: (1) investigating the application
of an AlexNet CNN model which is pre-trained on an
entirely different larger dataset to recognize images of
casting surface defects, and (2) optimizing hyperparameters
for best performance. The pivot of this study is a
classification task to segregate faulty casting products in a
manufactured batch through pattern recognition. Further
classification of defect types or localization of defects,
however, are out of the scope of this study. The dataset [17]
used in the study comprised only two classes named ‘defect’
and ‘defect-free’ representing images with one or more
defects, and images without any visible defect, respectively.

II. RELATED WORK

Recognition and localization of manufacturing defects
using machine learning techniques are explored in
numerous studies over the recent years with the focus of
achieving high-performing robust models. Several
primitive computer vision techniques were used by several
authors at the early stages of the pattern recognition field. A

background subtraction method followed by a thresholding
algorithm is proposed in [18]. The idea is to generate an
image with the same pixel intensities as the original image
except defective regions using low-pass filtering [19]. The
newly constructed image is then subtracted from the
original image resulting in a residual image containing only
defective regions. In [20] the Modified Median filter,
MODAN-Filter, is proposed to identify contours of the
casting defects from non-defective areas with a function to
calculate the pixel values of the background image.
Furthermore, equations of the MODAN-Filter are
generalized in [21] to achieve higher robustness. These
filtering-based methods that depend on optimum filter
parameters, however, can be unreliable when image noise is
present substantially. In [22], the wavelet transform method
is described as a potential technique to identify certain
casting defect types.

Feature-based detection of casting defects is another
trending approach that can be seen applied in [10], [23].
During this process, each pixel is classified as a defect or
not based on the features calculated using sets of nearby
pixels. Common features include statistical descriptors such
as mean, standard deviation, skewness, kurtosis, energy,
and entropy [24]. In [25], a hierarchical and a non-
hierarchical linear classifier has been implemented based on
six geometric and gray value features namely contrast,
position, aspect ratio, width-area ratio, length-area ratio,
and roundness. A Fuzzy logic-based method for the
detection and classification of defects that appear in the
radiographic images is proposed in [11].

Many modern studies have tested numerous CNN
architectures in terms of the performance and accuracy of
casting defect recognition tasks. Among those, Region-
Based Convolutional Neural Networks (R-CNNs) are used
for the automatic localization of casting defects
significantly [12]. R-CNNs are capable of setting bounding
boxes around categorical patches in the images where this
can be implemented easily to mark the defects in the casting
defect images. In [10], a new CNN architecture called Xnet-
II is introduced which comprises five convolutional and
fully connected layers. Moreover, they have used a dataset
generated through simulation using Generative Adversarial
Networks (GAN) [27] instead of real casting defect images.

Lack of sufficient data is a common problem in the
machine learning domain. Data augmentation where new
images are generated by augmenting the existing images of
casting defects efficiently and accurately with low
background noise is proposed in [28]. This mechanism is
based on a traditional image enlargement technique,
precisely forcing the CNN to learn more in the regions of
the image that need high attention in order to perform better
in the classification task. On the other hand, transfer
learning is effective not only in the lack of data scenarios
but also in respective to the robustness of the model. In [5],
the authors use ResNet CNN architecture for the recognition
of casting defects. When compared to AlexNet, due to the
architectural complexity, ResNet needs a significantly
larger number of computations which ultimately consumes
higher computational resources.

III. METHODOLOGY

In this section, we explain the approach used to
recognize casting surface defects of an industrial product
using AlexNet CNN architecture and transfer learning.

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

131

Improving the accuracy and the robustness of the AlexNet
architecture using transfer learning in the context of casting
defect detection is the major objective of this study.

A. Description of the dataset

The dataset, obtained from Kaggle datasets [17],
consists of images of a submersible pump impeller which is
manufactured as a casting product. All the images depict the
top view of the impeller and belong to two classes. The
images that exhibit at least one casting defect on the surface
of the impeller are labeled as defect while all the other
images, conversely, are labeled as defect-free. i.e., Any
casting defect on the surface that cannot be identified by the
naked eye from the images is labeled as defect-free.

This dataset is collected under stable lighting
conditions with a Canon EOS 1300D DSLR camera. The
dataset contains a total of 1300 gray-scaled images with the
dimensions of each as (512×512) pixels. Among those, 781
images are labeled as defect, and the remaining 519 images
are labeled as defect-free. Fig. 2 shows eight sample images
(size and the resolution is altered in order to adhere to paper
guidelines) and corresponding labels which are randomly
picked from the two classes. All the images acquired for this
study from the original dataset are only the raw images and
the augmentation is done as a part of this study.

B. Image augmentation

In this section, we discuss the image data augmentation
techniques applied for the dataset before the
experimentation. As in [29], several classical techniques
that belong to geometrical and color-based transformations
were applied randomly to yield higher variability. As per
geometric transformations, rotation, shearing, mirroring,
scaling (zoom-in/out) and translation were applied.
Nevertheless, color space transformations were limited only
to change of apparent brightness as the dataset already
contains grayscale images. Moreover, apparent brightness
change (performed randomly) in each pixel intensity of an
image was restricted to a maximum of 20% (either increase
or decrease) of the current intensity. It prevents introducing
new defect regions which were not in the original image or
disappearing significant regions of the image with low
intensities by further decreasing the intensity.

Fig. 3 shows one sample image (annotated as defect-
free) and corresponding images synthesized by augmenting
that image using all the techniques used in this study.

Among synthesized images, 5814 are annotated as defect-
free and 7668 are annotated as defects. At last, all the
images were resized to (224×224) pixels. Throughout all the
experimentation, training and validation data split is
diversified by changing the amount of training data to 20%,
40%, 50%, 60%, and 80% to understand the capacities of
generalization of the used models [30]. Hereinafter, the
ratio between the training image set and the validation
image set will be referred as train-test split ratio.

C. Non-parametric classification using the k-nearest

neighbor algorithm

K-Nearest Neighbor (KNN) algorithm, which is a basic
supervised machine learning algorithm, is used to
investigate the capability of performing the classification
task using raw pixel intensities as the input and without any
sophisticated feature extraction techniques.

In the context of computer vision, the KNN algorithm
performs classification of the data points (pixel values)
based on the distance between them and with the
assumption that similar features exist nearby. Common
methods of calculating the distance include the Euclidean
distance:

𝑑(𝑝, 𝑞) = √∑ (𝑞𝑖 − 𝑝𝑖)
2𝑁

𝑖−1 (1)

and the Manhattan/city block distance:

𝑑(𝑝, 𝑞) = ∑ |𝑞𝑖 − 𝑝𝑖|
𝑁
𝑖−1 (2)

where 𝑑(𝑝, 𝑞) is the distance between two 𝑝 and 𝑞 points in
the image spatial domain with N pixels.

In this study, the KNN algorithm is performed with the
raw pixel intensities of casting images without any feature
extraction with the Manhattan distance calculation metric
and the k value equals to five. The variation of precision,
recall, and f1-score is observed by varying the train-test split
ration.

D. CNN architecture

Despite the emerging CNN architectures, we base our
model around AlexNet architecture due to three reasons. (1)
To the best of our knowledge, application of AlexNet based
transfer learning in recognition of casting defects is not
addressed in past literature, (2) AlexNet is applied in a
diverse set of deep learning problems witnessing promising
results [30], [31], (3) AlexNet, which was proposed in 2012,
is regarded as the first deep CNN architecture which
showed pioneering results in image recognition and
classification tasks [32]. We show that AlexNet is
sufficiently deep and reliable for a modest classification of
casting surface defects when compared to other deeper
sophisticated architectures born after AlexNet, if
hyperparameters are properly optimized.

AlexNet consists of five 2D convolutional layers
(Conv2D) followed by three fully connected layers (FC).
The build of the AlexNet architecture is illustrated in Table
I and it is constructed with several common CNN
components

Fig. 2. Randomly picked eight number of sample images from the

dataset annotated as defect and defect-free

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

132

a) Convolution layers

Each convolutional layer consists of a set of filters

known as convolutional kernels where each neuron plays

the role of a kernel. The kernel is a matrix of integers where

it will multiply its weights with corresponding values of a

subset of pixels of the input image. The selected subset of

pixels of the input image has a similar dimension to the

kernel. Then, the resulting values are summed up to

generate one value that represents the value of a pixel in

the output (feature map). The kernel strides across the input

image producing the output (feature map of the entire

image) of the convolution layer. In each layer, the kernel

strides over a varying number of pixels at a time in both

dimensions (height and width). The convolution process

can be mathematically expressed as [33]:

𝑓𝑙
𝑘(𝑝, 𝑞) = ∑ ∑ 𝑖𝑐(𝑥, 𝑦). 𝑒𝑙

𝑘(𝑢, 𝑣)𝑥,𝑦𝑐 (3)

where, 𝑖(𝑥, 𝑦) is an element of the input image tensor with
𝑥 and 𝑦 coordinates, which is element-wise multiplied by

𝑒(𝑢, 𝑣) index of the 𝑘𝑡ℎ convolutional kernel of the 𝑙𝑡ℎ
layer. 𝑢 and 𝑣 are the rows and columns of the kernel
matrix. 𝑓(𝑝, 𝑞) is the corresponding output feature map
with 𝑝 columns and 𝑞 rows while 𝑐 is the image channel
index.

b) Pooling layers

Pooling operation sums up identical information in the
local region of the feature map generated by a
convolutional layer and outputs a single value within that
region [34]. AlexNet consists of three pooling layers
followed by the first, second and last convolution layers.

c) Activation function

 Use of Rectified Linear Unit (ReLU) as a non-linear

activation function of each layer is a significant

characteristic in AlexNet. ReLU activation function is:

𝑅(𝑧) = max (0, 𝑧) (4)

where 𝑧 is the function input and 𝑅(𝑧) is the function
output which equal to the input when the input is positive
and equal to zero otherwise.

d) Batch normalization

As a countermeasure for the overfitting, batch
normalization is performed after several layers of the
AlexNet.

e) Fully connected layer

At the end of the feature extraction stage
(accomplished by convolutional layers), three fully
connected layers are introduced which perform
classification globally [35].

f) Dropout

To achieve generalization, some units or connections
with a certain probability within the network are randomly

Fig. 3. Six transformations applied to a single original image (the symbols ‘x’ and ‘o’ in red color are used to understand the transformation in respect to the

original image). Relevant transformation is labeled on top of the image.

TABLE I. LAYERS OF THE ALEXNET ARCHITECTURE

ID Layer Type

Layer Parameters (f=no. of

feature maps, k=kernel size,

s=strides, act=activation

function)

Size of

Feature

Map

0 Input layer
Input image size=(224x224)

pixels, Channels=1

1 Conv2D
f=96, k=(11 x 11), s=4,

act=ReLU
555596

2 Max Pool f=96, k=(3 x 3), s=2, 272796

3
Batch

normalization
N/A 272796

4 Conv2D
f=256, k=(5 x 5), s=1,

act=ReLU
272796

5 Max Pool f=256, k=(3 x 3), s=2, 1313256

6
Batch

normalization
N/A 1313256

7 Conv2D
f=384, k=(3 x 3), s=1,

act=ReLU
1313384

8
Batch

normalization
N/A 1313384

9 Conv2D
f=384, k=(3 x 3), s=1,

act=ReLU
1313384

7
Batch

normalization
N/A 1313384

11 Conv2D
f=256, k=(3 x 3), s=1,

act=ReLU
1313256

12 Max Pool f=256, k=(3 x 3), s=2, 66256

13
Batch

normalization
N/A 66256

14 Dropout Rate=0.5 66256

15 FC f, k, s are N/A, act=ReLU 4096

16 Dropout Rate=0.5 4096

17 FC f, k, s are N/A, act=ReLU 1024

18 Dropout Rate=0.5 1024

19 FC f, k, s are N/A, act=softmax 2

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

133

skipped (dropout) [36]. The AlexNet model executes
dropout after several fully connected layers in it.

g) Output layer

The final layer of AlexNet architecture which acts as

the output layer uses the softmax activation function [37].

The softmax function is given by:

𝑆(𝑦𝑖) =
𝑒𝑥𝑝 (𝑦𝑖)

∑ 𝑒𝑥𝑝 (𝑦𝑗)𝑛
𝑗=1

 (5)

where 𝑦𝑖is the 𝑖𝑡ℎ element of the input vector, 𝑛 is the
number of classes which, in our case is two–defect and
defect-free.

In our study, four modifications were carried out on the
original AlexNet model creating an AlexNet variant. The
modifications are: (1) Number of channels in the input
convolutional layer is changed from three to one as our
dataset consists of only grayscale images, (2) Dropout is
imposed after each fully connected layer, (3) Batch
normalization is performed after third and fourth
convolutional layers, and (4) Number of output features of
the second fully connected layer changed from 4096 to
1024.

E. Application of transfer learning and optimizing

model hyperparameters

ImageNet dataset [38] is used for pre-training of the
AlexNet model and the influence of the transfer learning is
tested using three experimental configurations (EC):

• EC1: AlexNet is trained with the casting surface
defect dataset without any pre-training with
weights initialized randomly (training from
scratch).

• EC2: the same process in the previous
configuration repeated, but the weights initialized
with the ones found from the pre-trained model
instead of random weights.

• EC3: the exact weights of all the feature extraction
layers pre-trained on the ImageNet dataset were
used.

• EC4: the entire model parameters (including both
parameters of convolutional and fully connected
layers) of the pre-trained model on the ImageNet
dataset is used on the casting surface defect
dataset.

In each configuration, two types of hyperparameters
including optimizer [39] and learning rate are optimized
using the grid search method to achieve higher accuracy
with modest robustness. In the grid search method, all the
possible combinations of the selected hyperparameters are
tested in multiple trials. The grid search methods suffers
from the curse of dimensionality [40] where the number of
trials grows exponentially with the increase of the number
of hyperparameters. Nevertheless, the other sophisticated
optimizations are not used as we obtained sufficient
accuracies by varying only the two aforementioned
hyperparameters.

F. Implementation

Training of the AlexNet model is accomplished using
the Google Collaboratory tool–a free online python
programming environment specially designed for machine
learning tasks. CPU is composed of a single core hyper
threaded Intel Xeon Processors at 2.3Ghz speed and 13GB
RAM while GPU is a Tesla K80 GPU with a 12 GB
GDDR5 VRAM.

For the implementation of the AlexNet model and
KNN, TensorFlow [41] and Scikit-learn [42] open-source
tools are used. TensorFlow is an open-source framework
designed for the implementation and experimentation of
machine learning-related tasks while Scikit-learn is a high-
level machine learning library for python programming
language. Furthermore, pre-trained models including the
weights are acquired using PyTorch–an open-source deep
learning framework [43].

All the experiments ran for ten epochs, where epochs

are the number of training iterations where each neural
network accomplishes one learning instance over the
dataset. The selection of ten epochs is based on the
empirical observation that conveys all the training in each
experiment is always converged with ten epochs with
optimal hyperparameters.

IV. RESULTS AND DISCUSSIONS

This section presents the results obtained by following
the methods discussed in the previous section and related
interpretations.

A. Classification without learning

The results of the KNN classification of the casting
surface defect dataset are presented in this section. Table II
shows precision, recall, and the f1-score corresponding to
each class (defect and defect-free) obtained after
performing the KNN algorithm with varying the train-test
split ratio. With the reduction of the training set percentage,
there is no significant gradual change in the accuracy as
there is no learning that occurred during the training process
by the KNN algorithm unlike the learning models discussed
in this paper.

The overall average accuracy of the classification of
casting surface image data using the KNN algorithm is
relatively lower when compared to the results of CNN
models discussed in the future sections. This lower accuracy
reveals that the classification using raw pixel intensities and
their proximities to neighbor values in the casting surface
defect images are not significant. This phenomenon
discloses that all the images in each class are unique up to a
certain extent in respect of pixel intensities which in return,
induces the importance of the feature extraction. On the

TABLE II. PRECISION, RECALL AND F1-SCORE OF THE TWO CLASSES

OBTAINED AFTER CLASSIFICATION USING KNN ALGORITHM

 Defect Defect-free

Test:

Train
Precision Recall

F1-

Score
Precision Recall

F1-

Score

0.2:0.8 0.86 0.87 0.88 0.86 0.81 0.83

0.4:0.6 0.85 0.88 0.86 0.84 0.79 0.81

0.6:0.4 0.85 0.88 0.86 0.84 0.79 0.81

0.8:0.2 0.84 0.82 0.83 0.77 0.79 0.78

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

134

other hand, when observed with a perspective of the
accuracies (i.e., All the accuracies are around 0.8 which is
regarded as a significant performance in image
classification tasks) it reveals that the image dataset has
lower levels of noise.

B. Classification with learning

Classification endorsed by the application of CNNs
manifested higher accuracies when compared to the
classification performed by the KNN algorithm. Fig. 4
illustrates the variation of accuracy with different train-test
split ratios and different experimental configurations.

For each experimental configuration, training accuracy
(as shown in Fig. 4-a) is dropped when the training image
portion decreases while increasing the number of validation
images. In fact, demonstrating the common idea that lesser
training in deep learning models causes lesser accuracies.
Nevertheless, the size of the drop is negligible as all the
accuracies are above 0.9 (or equal to 0.9) in each scenario.
The highest overall accuracy is achieved when the training
weights are initialized from the pre-trained model (EC2)
instead of random initialization (EC1).

Specifically, even with 20% training images, the use of
the exact feature extractor of the pre-trained model for
training (EC3) induced higher accuracy than training from
scratch. In the instance where both feature extractor weights
and classifier weights (weights of the fully connected
layers) of the pre-trained model are used on training, an
overall accuracy of 0.9 is achieved.

On the contrary, validation process accuracy (as shown
in Fig. 4-b) does not fluctuate considerably over the
variation of train-test split ratio regardless of the
experimental configurations except where training is done
from scratch. All the transfer learning schemes (EC2, EC3,
and EC4) show improved validation accuracies when
compared to training from scratch (EC1) on the casting
surface image dataset.

Table III indicates the possible combinations of the
hyperparameters used for the grid search method and
related accuracies for EC3 with 20% of training images.
During optimization of hyperparameters, first, we picked a
random learning rate (0.0001) and performed a grid search
with seven optimizer types. The best performance is gained
by setting the optimizer to the RMSprop algorithm [39].
Fixing the optimizer as RMSprop algorithm, then we tested
several learning rates which resulted in 0.0001 as the
optimum value. Overall best hyperparameters (i.e.,
optimizer type and learning rate) found by the grid search
method with the other hyperparameters found from the
literature were standardized as shown in Table IV over the
final run of each experiment.

V. CONCLUSIONS AND FUTURE WORK

Maintaining quality standards is vital in the casting
product manufacturing industry for better business

Fig. 4. (a) and (b) are the accuracies of training process and the validation process, respectively over different experimental configurations (ECs)

(which are mentioned under methodology of this paper) and varying train-test split ratios.

TABLE III. RESULTS OF THE GRID SEARCH METHOD PERFORMED TO

FIND BEST OPTIMIZER AND LEARNING RATE

Search 1: Learning Rate is Randomly Selected

(=0.0001) and Fixed to Test Several Optimizer Types

Learning

Rate
Optimizer

Training

accuracy

Training time

(seconds)

0.0001

Adam 0.94 742

Adadelta 0.57 757

AdamW 0.90 484

Adamax 0.89 518

ASGD 0.57 505

RMSprop 0.93 635

SGD 0.58 744

Search 2: Best Optimizer (RMSprop) from Search 1 is

Fixed and Tested Several Learning Rates

Optimizer
Learning

rate

Training

accuracy

Training time

(seconds)

RMSprop

0.1 0.55 630

0.01 0.57 634

0.001 0.94 641

0.0001 0.93 637

0.00001 0.93 642

TABLE IV. OPTMIZED HYPERPARAMETER SETTINGS/VALUES

STANDARIZED THROUGHT ALL EXPERIMENTS

Hyperparameter Setting/Value

Obtained with Grid Search

(GS) Method/Using

Literature (LT)

Optimizer RMSprop GS

Learning Rate 0.0001 GS

Learning rate

policy

Step (decay

over epoch)
LT

Momentum 0.9 LT

Batch Size 16 LT

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

135

performance and for the safety of the end-users who
consume products with critical mechanical components
fabricated by casting. Automated inspection of casting
defects leads to lesser inspection times and circumvents
safety problems of employees working in hazardous
environments.

In this paper, we discussed the application of AlexNet
CNN architecture-based transfer learning for automated
inspection of surface defects of a submersible pump
impeller manufactured by casting. Over the last decade, for
the task of casting defect recognition, numerous
sophisticated architectures were proposed with higher
architectural complexity and better performance compared
to the AlexNet architecture. Using the results of our study,
we show (limited to the dataset used) that a simpler
architecture like AlexNet can perform better when it is
implemented with transfer learning and optimized model
parameters. As future work, methods discussed in this study
can be tested over other datasets containing images of
casting surface defects of different products.

Over the several experimental configurations tested,
the use of the exact feature extractor of the pre-trained
model for training demonstrated the best performance in
terms of training accuracy and the training time (Although
training with weights initialized from the pre-trained model
resulted in the overall highest accuracy the training time is
higher in contrast to using the entire feature extractor.

Several recommendations for a casting surface defect
detection system can be made based on the results of this
study. Nevertheless, as future work, the practical usability
of such a system needs to be tested prior to implementation
as several dataset-specific parameters still need to be
adjusted depending on the circumstance. The process of
capturing the surface images of the casting products is vital
including, but not limited to: (1) adhering to proper lighting
conditions, and (2) maintaining unique and plain
background when capturing. As shown in the results,
transfer learning can be implemented to reduce the training
time and enhance the robustness of the model. Moreover,
transfer learning is beneficial when the number of training
images is lower. Specifically, the use of a feature extractor
from the pre-trained model and limiting the training only
with the classification layers (fully connected layers) with
casting defect data is advantageous instead of using all the
parameters of the pre-trained model. Furthermore, fine-
tuning the model hyperparameters is crucial for obtaining
better results.

REFERENCES

[1] W. Barkman, In-process quality control for manufacturing. CRC
Press, 1989.

[2] R. T. Chin and C. A. Harlow, “Automated visual inspection: A
survey,” IEEE transactions on pattern analysis and machine
intelligence, no. 6, pp. 557–573, 1982.

[3] M. Sahoo, Principles of metal casting. McGraw-Hill Education,
2014.

[4] T. V. Sai, T. Vinod, and G. Sowmya, “A critical review on
casting types and defects,” Engineering and Technology, vol. 3,
no. 2, pp. 463–468, 2017.

[5] M. K. Ferguson, A. Ronay, Y.-T. T. Lee, and K. H. Law,
“Detection and segmentation of manufacturing defects with
convolutional neural networks and transfer learning,” Smart and
sustainable manufacturing systems, vol. 2, 2018.

[6] D. Mery, T. Jaeger, and D. Filbert, “A review of methods for
automated recognition of casting defects,” INSIGHT-WIGSTON
THEN NORTHAMPTON-, vol. 44, no. 7, pp. 428–436, 2002.

[7] S. Gholizadeh, “A review of non-destructive testing methods of
composite materials,” Procedia Structural Integrity, vol. 1, pp.
50–57, 2016.

[8] Q. Wan, H. Zhao, and C. Zou, “Effect of micro-porosities on
fatigue behavior in aluminum die castings by 3D X-ray
tomography inspection,” ISIJ international, vol. 54, no. 3, pp.
511–515, 2014.

[9] K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” arXiv preprint arXiv:1511.08458, 2015.

[10] H. Strecker, “A local feature method for the detection of flaws in
automated X-ray inspection of castings,” Signal Processing, vol.
5, no. 5, pp. 423–431, 1983, doi: https://doi.org/10.1016/0165-
1684(83)90005-1.

[11] Z. Górny, S. Kluska-Nawarecka, D. Wilk-Ko\lodziejczyk, and K.
Regulski, “Diagnosis of casting defects using uncertain and
incomplete knowledge,” Archives of Metallurgy and Materials,
vol. 55, no. 3, pp. 827–836, 2010.

[12] M. Ferguson, R. Ak, Y.-T. T. Lee, and K. H. Law, “Automatic
localization of casting defects with convolutional neural
networks,” in 2017 IEEE international conference on big data
(big data), 2017, pp. 1726–1735.

[13] L. Alzubaidi et al., “Review of deep learning: Concepts, CNN
architectures, challenges, applications, future directions,” Journal
of big Data, vol. 8, no. 1, pp. 1–74, 2021.

[14] Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Advances in neural information processing systems, vol. 25, pp.
1097–1105, 2012.

[15] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10,
pp. 1345–1359, 2009.

[16] Koutsoukas, K. J. Monaghan, X. Li, and J. Huan, “Deep-learning:
investigating deep neural networks hyper-parameters and
comparison of performance to shallow methods for modeling
bioactivity data,” Journal of cheminformatics, vol. 9, no. 1, pp.
1–13, 2017.

[17] R. Dabhi, “Casting product image data for quality inspection,”
Kaggle.com. https://kaggle.com/ravirajsinh45/real-life-
industrial-dataset-of-casting-product (accessed Jun. 14, 2021).

[18] Gayer, A. Saya, and A. Shiloh, “Automatic recognition of
welding defects in real-time radiography,” Ndt International, vol.
23, no. 3, pp. 131–136, 1990.

[19] Eckelt, N. Meyendorf, W. Morgner, and U. Richter, “Use of
automatic image processing for monitoring of welding processes
and weld inspection,” in Non-destructive testing, Elsevier, 1989,
pp. 37–41.

[20] Filbert, R. Klatte, W. Heinrich, and M. Purschke, “Computer
aided inspection of castings,” in IEEE-IAS Annual Meeting,
1987, pp. 1087–1095.

[21] Mery, “New approaches for defect recognition with X-ray
testing,” Insight, vol. 44, no. 10, pp. 614–15, 2002.

[22] X. Li, S. K. Tso, X.-P. Guan, and Q. Huang, “Improving
automatic detection of defects in castings by applying wavelet
technique,” IEEE Transactions on Industrial Electronics, vol. 53,
no. 6, pp. 1927–1934, 2006.

[23] Kehoe and G. A. Parker, “An intelligent knowledge based
approach for the automated radiographic inspection of castings,”
NDT & E International, vol. 25, no. 1, pp. 23–36, 1992.

[24] D. Wang, B. Wang, H. Yao, H. Liu, and F. Tombari, “Local
image descriptors with statistical losses,” in 2018 25th IEEE
International Conference on Image Processing (ICIP), 2018, pp.
1208–1212. doi: 10.1109/ICIP.2018.8451855.

[25] R. R. Da Silva, M. H. S. Siqueira, L. P. Calôba, and J. M. Rebello,
“Radiographics pattern recognition of welding defects using
linear classifiers,” Insight, vol. 43, no. 10, pp. 669–74, 2001.

[26] Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, “Generative adversarial networks: An
overview,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp.
53–65, 2018.

[27] L. Jiang, Y. Wang, Z. Tang, Y. Miao, and S. Chen, “Casting
defect detection in X-ray images using convolutional neural
networks and attention-guided data augmentation,”
Measurement, vol. 170, p. 108736, 2021.

[28] Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, vol. 6, no.
1, pp. 1–48, 2019.

[29] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep
learning for image-based plant disease detection,” Frontiers in
plant science, vol. 7, p. 1419, 2016.

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

136

[30] Abd Almisreb, N. Jamil, and N. M. Din, “Utilizing AlexNet deep
transfer learning for ear recognition,” in 2018 Fourth
International Conference on Information Retrieval and
Knowledge Management (CAMP), 2018, pp. 1–5.

[31] M. Z. Alom et al., “The history began from alexnet: A
comprehensive survey on deep learning approaches,” arXiv
preprint arXiv:1803.01164, 2018.

[32] Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,”
Artificial Intelligence Review, vol. 53, no. 8, pp. 5455–5516,
2020.

[33] C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling
functions in convolutional neural networks: Mixed, gated, and
tree,” in Artificial intelligence and statistics, 2016, pp. 464–472.

[34] W. Rawat and Z. Wang, “Deep convolutional neural networks for
image classification: A comprehensive review,” Neural
computation, vol. 29, no. 9, pp. 2352–2449, 2017.

[35] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.
R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580,
2012.

[36] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax
loss for convolutional neural networks.,” in ICML, 2016, vol. 2,
no. 3, p. 7.

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009
IEEE conference on computer vision and pattern recognition,
2009, pp. 248–255.

[38] S. R. Labhsetwar, S. Haridas, R. Panmand, R. Deshpande, P. A.
Kolte, and S. Pati, “Performance Analysis of Optimizers for Plant
Disease Classification with Convolutional Neural Networks,”
arXiv preprint arXiv:2011.04056, 2020.

[39] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization.,” Journal of machine learning research, vol. 13, no.
2, 2012.

[40] M. Abadi et al., “Tensorflow: A system for large-scale machine
learning,” in 12th symposium on operating systems design and
implementation, 2016, pp. 265–283.

[41] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,”
the Journal of machine Learning research, vol. 12, pp. 2825–
2830, 2011.

[42] Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information
processing systems, vol. 32, pp. 8026–8037, 2019.

