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Abstract— This paper presents a drone simulator to 
spray fertilizer for rice farmland with minimum human 
intervention. The proposed drone simulator is capable of 
suggesting the optimal path to spray fertilizer, indicating 
the current altitude and the current battery level of the 
drone at flight. The obtained results at the evaluation 
stage show that the proposed path planning algorithm 
outputs the optimal path for given farmland with 
minimum execution time. This solution will cherish the 
use of drone technology for rice agriculture while 
supporting the economic growth of a country. 
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I. INTRODUCTION 

Rice cultivation is one of the main income generating 
methods in most if the developing countries. Due to 
increasing demand for rice, farmers need to produce a higher 
quantity of rice every year. Fertilizing crops is the most 
difficult part of crop production. 

A drone has considerably larger popularity rather than 
other unmanned equivalents due to its smaller size and 
flexibility. Also, drone technology has been successfully 
applied to agriculture through soil and field analysis, 
planting, crop spraying, crop monitoring, irrigation, and 
health assessment [1]. 

Using individual drones for spraying fertilizer is not a 
novel approach. Operating a drone in a suitable manner can 
minimize excessive fertilizer usage. Using an autonomous 
drone to spray fertilizer has several advantages over manual 
fertilizer spraying process as it allows to cover a larger area 
within a small time, which ultimately leads to low cost by 
reducing labor and time. 

Through this research, we address the question of “How to 
develop a drone simulator for spraying fertilizer in a rice 
farmland?”. This solution proposes a path planning algorithm 
for an autonomous drone to spray fertilizer appropriately to 
arable areas with minimum human 

intervention [11, 12]. The proposed solution has 4 modules: 
the 2D Grid Maker module, the Path Planning Algorithm 
module, the Altitude Generation Service module and the 
Battery Monitoring Service module. Here, when the farmer 
inputs the relevant details of the farmland that he/she wants 
to spray fertilizer, the proposed solution outputs the 2D grid 
of the farmland using the 2D Grid Maker module. Then the 
Path Planning Algorithm module outputs the optimal path for 
the generated 2D grid and the Altitude Generation Service 
module represents the current altitude of the drone when it 
flies along the proposed optimal path. Afterwards, the Battery 
Monitoring Service module monitors the current battery level 
of the drone in flight. 

When using the proposed solution, the farmer only needs 
to identify the safe and unsafe areas of the farmland using its 
aerial image and input these details to the system. The farmer 
does not have to worry about the spraying process. He/she 
can monitor the overall spraying process through a mobile 
application while the drone is executing its task. Moreover, 
this solution can spray fertilizer to multiple arable areas with 
minimum human intervention. 

II. OBJECTIVES 

Manually spraying fertilizer takes a considerable amount 
of time and manpower. Hence, using an autonomous drone 
for the fertilizer spraying process can cover large farmland 
within a minimum time while reducing human intervention. 
This approach can diminish the extravagant cost for the 
labourers while saving time and money of the farmers. 

Since the proposed drone simulator is for a fully 
customized autonomous drone, it sprays only the approved 
amount of fertilizer. Hence, it helps to reduce fertilizer 
wastage, health and environmental issues and save money 
spent on excessive amounts of fertilizer. 

Most of the available path planning drone solutions are 
available only to achieve a single target from a starting 
location [2]. However, our research solution is capable of 
visiting and covering multiple arable areas (multiple targets) 
in a single drone flight. As mentioned in [3], some 
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successful path planning methods are only for unknown 
environments. However, the proposed solution is for a fully 
observable environment. A key feature here in is the ability 
of the drone to avoid unsafe areas which can harm the drone 
flight [4]. Interestingly, the proposed drone simulator will be 
a better platform to the fertilizer industry since it can regulate 
the fertilizer usage, reduce fertilizer over usage, save farmer’s 
time, speed up the fertilizer spraying process and minimize 
the human intervention at the spraying process. 

III. METHODOLOGY 
 

 
Fig. 1. The overview of the proposed solution 

Fig. 1 illustrates the overview of the proposed solution, 
and the stepwise details are as follows: 

 
A. There is a central system to manage drone operations 

and a mobile application for the farmer to  communicate with 
the central system. The farmer has an aerial image of the 
farmland (Fig. 2(a)), and he/she identifies the safe and unsafe 
areas of the farmland and sends these details to the central 
system. Here, the safe areas are the areas with crops and the 
unsafe areas are traps, forbidden areas (dams, ponds, 
wastelands, streams, and private properties), and dead zones. 

 
B. The central system sends the farmer’s input to the 2D 

Grid Maker module. It generates the 2D grid based on the 
input as illustrated in Fig. 2(b). Here, the purple cell is the 
initial distribution (the starting location of the drone flight), 
the green cells are the safe areas, the red cells are the unsafe 
areas, and blue cells are the obstacle-free areas. The 2D grid 
details are passed to the central system. 

 

Fig. 2. The aerial image and the 2D grid of the farmland 

C. The central system passes the obtained 2D grid details 
to the Path Planning Algorithm module. It outputs the optimal 
path as illustrated in Fig. 3. Here, the yellow line shows the 
proposed path for the drone flight, which starts from the 
initial distribution and covers all the safe areas in a single 
visit. A white dot in the middle of each safe area represents 
the fertilizer spraying locations. The drone needs to hover in-
place at the location, which is represented by the white dot, 
spray the approved amount of fertilizer, and  move forward 
along the proposed path. 

 

 
Fig. 3. The 2D grid with the optimal path 

The steps of the Path Planning Algorithm module are as 
follows: 

i. Create the transition matrix. Here, it contains the 
transitions from safe areas to obstacle-free areas and from 
obstacle-free areas to safe areas. We avoid the transitions to 
and from unsafe areas to speed up the learning and training 
process. 

 

 
Fig. 4. The goal clusters
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ii. Merge successive safe areas into a single goal cluster 
(Fig. 4). Otherwise, there are a lot of safe areas to cover by  a 
single path from the initial distribution and it will take more 
time to give the final output. 

iii. Acquire the relevant Linear Temporal Logic (LTL) 
[5] formula to cover all the goal clusters as represented by 
Equation (1). 

♦g1 ˄  ♦g2 ˄  ♦g3 ˄  ♦g4 ˄  ♦g5 (1) 

iv. Obtain  the  relevant  Deterministic  Büchi  Automata 
(DBA) [5] to satisfy the obtained LTL formula. 

v. Update the transition matrix according to the newly 
formed goal clusters. 

vi. Apply the Q learning algorithm [6] to the updated 
transition matrix. The reason behind that is to identify a 
single optimal path from the initial distribution to multiple 
goal clusters. 

vii. However, the Q learning algorithm can only  approach 
the goal clusters and it cannot visit the safe areas inside a goal 
cluster. To solve that, we apply the Hamiltonian Cycle [7] for 
each goal cluster while the Q learning process is ongoing. 

viii. Obtain the optimal path for the relevant 2D grid as 
shown in Fig. 3 and then send the path details to the central 
system. 

 
D. According to the obtained path, the central system 

directs the Altitude Generation Service module to create the 
relevant altitude graph. Using this module, the farmer can 
monitor the flying altitude of the drone at the spraying 
process, in real time. This module helps to fly the drone 
above the ground level without colliding on the ground. 

 
We identify the altitude of the proposed path according to 

the geo-locations with the help of Google Earth [8]. The 
farmer can monitor the current altitude of the drone using the 
altitude curve illustrated in Fig. 5 while the drone is in flight 
via the mobile application. Here, the x-axis and the y- axis 
represent geo-location (latitude and longitude) and altitude in 
meters of the flying path respectively. Also, the green curve 
shows the true elevation function (the altitude curve of the 
farmland) and the red curve shows the drone altitude function 
(the flying altitude of the drone). To obtain the drone altitude 
function, we apply a Polynomial Regression [9]. It helps the 
drone to fly a little bit higher than the ground level without 
colliding on the ground. Moreover, the purple dot in Fig. 5 
shows the current altitude value of the drone. The farmer can 
observe this dot moving when the drone moves along the 
proposed path. However, the movement of the drone is 
shown only until the end of the proposed path. If the battery 
dies before finishing the spraying process, the system shows 
the movement of the drone only until that time. At the 
moment, the proposed solution does not have an option to 
identify the path from the stopping location of the drone to 
the initial distribution. 

 

Fig. 5. A sample altitude curve 
 

E. Afterwards, the central system informs the farmer, that 
the drone is ready to fly. The farmer can command the central 
system to fly the drone to spray fertilizer. 

 
F. If the farmer wants to monitor the real-time battery 

level of the drone at its flight, he/she can enable the Battery 
Monitoring Service module through the mobile application. 
This module functions in real-time. 

 
Fig. 6 illustrates a battery draining curve that we have 

used. Here, the x-axis represents the time in minutes and the 
y-axis represents the battery life (the battery level) as a 
percentage. Also, the green curve and the red curve show the 
true battery draining function and the 10% level of the battery 
respectively. We interpolate [10] the first 10 data points of 
the battery reading of the drone and extrapolate 
[10] the future battery readings based on the interpolated 
values. 

 
Fig. 7 shows the battery reading at 34 minutes and the 

remaining cells (number of hops) are 9. The number of hops 
shows the remaining cell count that the drone can fly with the 
current battery level. The blue dotted line illustrates the 
current battery value reading and the purple dotted line shows 
the predicted battery values based on the extrapolation. If the 
battery level becomes 10%, the drone stops the flight, and the 
system stops its execution. Currently, we do not have an 
option to plan the path or follow any safety steps at the battery 
level at 10%.
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Fig. 6. The battery draining curve 

 

 
Fig. 7. Real-time battery reading 

 
G. Finally, the central system commands the drone to 

spray fertilizer according to the proposed path. The farmer 
can view the spraying process in real-time via the mobile 
application. Here, the drone has a GPS sensor for geo- 
location identification, a General Packet Radio Service 
(GPRS) sensor to communicate via internet with the central 
system, a spray tank to spray fertilizer and a charging port  to 
recharge its battery. 

IV. RESULTS AND DISCUSSION 

The overall evaluation was carried out in 2 phases with the 
purpose of evaluating accuracy and speed. The evaluation 
phases are described as follows: 

A. Suitability of the Proposed Algorithm 
The execution speed of our Path Planning Algorithm 

(PPA) was evaluated with the Without Clustering approach 
(WC). WC has similar steps as PPA except for steps 3(ii) and 
3(vii) in Section III. In WC, successive safe areas were not 
merged into a single goal cluster, due to each safe area 

being considered as a separate goal and there was no need of 
using step 3(ii) in Section III. In PPA, the Hamiltonian Cycle 
was applied only to visit all the safe areas inside a goal 
cluster. However, in WC there are no goal clusters and it is 
useless to use step 3(vii) in Section III for a single goal (a safe 
area). 

As illustrated in Fig. 8, PPA and WC for 4 test cases  were 
evaluated. According to Fig. 8, (1)a and (1)b  illustrates the 
obtained path for test case 1 using PPA and WC respectively. 
Other figures in Fig. 8 are similar to that. The relevant 
simulation results for each test case are represented by Table 
1. It shows the goal count, the DBA states count, the path 
length and the execution time (in seconds) for each test case 
when using PPA and WC. 

According to Table 1, we can see the goal count is 
relatively smaller in PPA. The reason behind this is the 
proposed algorithm merging the successive safe areas into a 
single goal cluster at step 3(ii) in Section III. As a result that, 
the total number of DBA states count is also  decreased. Now 
the address space of the updated transition matrix is also 
relatively smaller than WC’s updated transition matrix. 

As all the safe areas has to be visited in a single goal 
cluster, the Hamiltonian Cycle was used for PPA. However, 
in WC, there aren’t any goal clusters and it is useless to apply 
the Hamiltonian Cycle while the Q learning process is 
ongoing. According to that, WC should speed up the training 
process, since there is no step 3(vii) in Section III with step 
3(vi) in Section III. Nevertheless, the execution time of PPA 
is relatively trivial. The reason behind that is step 3(ii) in 
Section III of PPA enables the capability of covering the 
successive safe areas as a single goal cluster and it enables 
the Hamiltonian Cycle to visit inside it. Unfortunately, WC 
does not have such a mechanism. Initially, it considers all 
safe areas as separate goals. As a result that, it has a higher 
number of DBA states. The increasing DBA states count also 
increases the address space in the updated transition matrix. 
So the state space becomes relatively larger and step 3(ii) in 
Section III has to train and learn based on this larger transition 
matrix. Therefore, WC has a higher execution time than PPA. 
Since WC has to visit every goal separately, it cannot traverse 
to a certain safe area through the successive safe areas. This 
procedure is the reason to increase the path lengths in WC 
relatively. 

When carefully checking Fig. 8 and Table 1, Figure (3)b 
and its relevant results were not available. At the testing time, 
it took more than 5 hours for the execution using WC. Since 
WC increases the goal count and the DBA states count 
relatively, the transition matrix becomes complex. 
Furthermore, comparatively test case 3 has an enclosed 
environment to achieve safe areas. These aforementioned 
reasons cause to take more time for training using WC. 
Therefore, there is no output for Fig. 8 3(b). 

According to the obtained simulation results, it can be 
concluded that PPA outputs a shorter path with a minimum
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execution time since merging successive safe areas into a 
single goal cluster and utilizing the Hamiltonian Cycle. The 
results prove that the proposed path planning algorithm is 
more suitable for the given context. 
Table 1. The simulation results with path lengths and execution times 

 
 
 
 
 
 
 
 

      B.       Accuracy 
In this phase we have checked whether the proposed path 

planning algorithm can output the optimal path for different 
2D grids as illustrated in Fig. 9. We executed the proposed 
solution 10 times for every 2D grid in Fig. 9 and obtained 
results as shown in Table 2. 

According to Table 2, Grid (a) has the lowest accuracy. 
The main reason behind that is that the goal count and DBA 
states count are relatively higher than Grid (b), and there are 
comparatively a lot of obstacle-free areas between the initial 
distribution and the goals clusters. When there are a lot of 
obstacle-free areas between the initial distribution and the 
goals clusters, it is very hard to find an optimal path. Since 
Grid (c) has many obstacle-free areas between the initial 
distribution and the goal clusters, it also has lower accuracy. 
Grid (b) has the highest accuracy, as there are fewer obstacle-
free areas between the initial distribution and the goal clusters 
and it is easy the find a path to cover all the goal clusters from 
the initial distribution. Furthermore, the other reason for the 
highest accuracy of Grid (b) is its goal count and DBA states 
count is relatively lower than the other 2D grids. However, 
the proposed algorithm outputs the shortest path for all the 
grids at least 7 times out of 10 executions. As an average, we 
got an 86.67% accuracy for all the 2D grids in Fig. 9. 
According to these results, we can state that the proposed path 
planning algorithm outputs the optimal path for a given 2D 
grid. 

 

 
Fig. 9. The test results for different 2D grids 

Test 
Case 

Numbe
r 

Goal Count DBA States 
Count 

Path 
Length 

Execution 
Time (s) 

PP
A 

W
C 

PP
A 

W
C 

PP
A 

W
C 

PPA WC 

(1) 1 3 1 3 4 7 4.35 5.89 

(2) 1 4 1 4 6 12 3.84 28.5
9 

(3) 2 5 2 5 8 - 6.72 - 

(4) 3 5 3 5 9 12 5.51 57.3
4 

 

Fig. 8. The outcooms of the two evaluation approaches. 
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The obtained results from the 2 evaluation phases 
show the proposed path planning solution is capable to 
output the optimal path for a given farmland with a 
minimum execution time. Nevertheless, there can be 
some accuracy issues of the proposed path, if there are 
more obstacle-free areas among the initial distribution 
and the goal clusters. However, the proposed path 
planning algorithm has a few limitations: the goal cluster 
must have a Hamiltonian path and its shape must be a 
square or a rectangle. 
Table 2. The path accuracy for different 2D grids 

 

Grid 
Name Goal Count DBA States 

Count Accuracy (%) 

(a) 3 3 70.00 
(b) 2 2 100.00 
(c) 3 3 90.00 

Overall Accuracy (%) 86.67 
 
 

V. CONCLUSION 

In this paper, we have proposed a drone simulator with 
an optimal path planning algorithm for an autonomous 
drone. The main purpose for developing this, is reducing 
the human intervention at the fertilizer spraying process 
in rice agriculture. The proposed solution has the 2D Grid 
Maker module to convert an aerial image of the farmland 
that we want to spray fertilizer to the relevant 2D grid 
image, the Path Planning Algorithm module to generate 
the optimal path to cover all safe areas while avoiding 
unsafe areas from the initial distribution, the Altitude 
Generation Service module to identify the current flying 
altitude of the drone without colliding on the ground and 
the Battery Monitoring Service module to monitor the 
real-time battery draining of the drone. Since the Altitude 
Generation  Service module and the Battery Monitoring 
Service module are at the development stage, we do not 
have the path planning solution and altitude changes after 
the drone battery dies. 

We have evaluated the proposed path planning 
algorithm under 2 phases in Section IV: suitability-wise 
and accuracy- wise. According to the obtained results, it 
proves the algorithm outputs the optimal path within a 
minimum execution time while avoiding unsafe areas. 
The proposed path planning algorithm produces the 
optimal path from the initial distribution to cover all the 
safe areas in a single visit. However, there are several 
limitations in the proposed solution: there could be 
accuracy issues when there are more obstacle-free areas 
among the initial distribution and the goal clusters, there 
must be at least a single Hamiltonian path to visit inside 
the goal cluster and the goal cluster’s shape should be a 
square or a rectangle. 

Through the proposed drone simulator, we can cover 
large farmland within a minimum time and minimum 
human intervention. This helps to reduce the fertilizer 
wastage during the spraying process and speed up the 

spraying process. Also, through reducing the overuse 
of fertilizer the farmer can save money without 
spending extravagantly on fertilizer. Using drone 
technology for rice agriculture can save the farmer’s 
money from expensive labourers as well. 

In the future, we expect to complete the development 
of the ongoing modules and tackle the problems while 
the drone battery dies. Furthermore, we hope to test the 
drone simulator with an autonomous drone. We 
anticipate improving the proposed drone simulator not 
only for rice but also for other agricultural crops. 
Moreover, we look forward to selling or renting out the 
developed drone solution to the farmers as a package 
with a concessional price. 

This research helps to promote the drone technology 
in developing countries and regulate the fertilizer 
usage. Through the regulation of fertilizer, the farmer 
can increase not only the quantity of the harvest, but 
also the quality. It will provide a great support to the 
economical development of the country. 
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