

INTERNATIONAL CONFERENCE ON ADVANCES IN TECHNOLOGY
AND COMPUTING (ICATC-2021)

Faculty of Computing and Technology (FCT), University of Kelaniya, Sri Lanka
18th December 2021

 Index N0: CT-02-31

Database Management System Deployment on Docker
Containerization for Distributed Systems

Abstract—Containerization is a novel technology that
brings an alternative for virtualization. Due to the most
infrastructure-based features, most computer system
administration engineers use Docker as the
infrastructure level platform. On the Docker
containers, any such kind of software service can be
deployed. This study aims to evaluate Docker container
based relational database management system
container behavior. Currently, most scholarly research
articles are existing for the database engine
performance evaluation under different metrics and
measurements of the database management systems.
Therefore, without repeating them: this study evaluated
the data storage mechanisms, security approaches,
container resource usages and container features on the
launching mechanism. According to the observed
features and factors on the containerized database
management systems, containerized database
management systems are presenting more value-added
features. Hence containerized database management
system Docker containers can be recommended for the
distributed computer systems for getting the benefit of
effectiveness and efficiency.

Keywords - containers, database management systems,
distributed Systems, Docker, MySQL, PostgreSQL

I. INTRODUCTION
Virtualization is an old concept that provides on premise

or cloud-based virtual machines to deploy any such software
applications or system services. Virtual machines provide
the facility to optimize the host server capacity by launching
multiple different operating systems. Virtualization carries
additional overhead since one virtual machine consists of a
fully installed operating system. To optimize the whole

virtual machine process, reduce the virtual machine weight
and enhance the infrastructure performances: an alternative
technology called container virtualization arrived.

Within the containerization, containers allow to deploy
and run software applications and services without using or
creating separate virtual machines. By sharing the host
computer operating system kernel, separated multiple
containers are executing on the infrastructure. To execute
any software application or service, all necessary software
dependencies, libraries and binaries are packaged into each
container [1].

For the secure execution of the containers, basic Linux
features are used for the containers. Those are cgroups,
chroot and namespaces. Since containers are not using full
operating system instances, containers require less CPU,
memory and storage capacity according to the fundamental
theory of container virtualization [1]. Fig. 1 presents the
container architecture as a graphical notation.

Fully packaged independent containers are running on
own container engine. Each container consists of its own
independent subsystem for the file system, memory and
network. The container engine is the component that has the
authority to manage containers. Containers of the same
container engine share the same host operating system.
Therefore, the infrastructure supports launching a massive
number of containers on a single operating system [2].

R.M.K.T. Rathnayaka (4th Author)
Department of Physical Sciences and Technology

Faculty of Applied Sciences
Sabaragamuwa University of Sri Lanka

Belihuloya, Sri Lanka
kapilar@appsc.sab.ac.lk

B.T.G.S. Kumara (3rd Author)
Department of Computing and Information Systems

Faculty of Applied Sciences
Sabaragamuwa University of Sri Lanka

Belihuloya, Sri Lanka
kumara@appsc.sab.ac.lk

K.P.N. Jayasena (2nd Author)
Department of Computing and Information Systems

Faculty of Applied Sciences
Sabaragamuwa University of Sri Lanka

Belihuloya, Sri Lanka
pubudu@appsc.sab.ac.lk

W.M.C.J.T. Kithulwatta (1st Author)
Faculty of Graduate Studies

Sabaragamuwa University of Sri Lanka
Belihuloya, Sri Lanka

Faculty of Technological Studeis
Uva Wellassa University of Sri Lanka Badulla, Sri Lanka

chirantha@uwu.ac.lk

ISSN 2756-9160 Page 7

INTERNATIONAL CONFERENCE ON ADVANCES IN TECHNOLOGY
AND COMPUTING (ICATC-2021)

Faculty of Computing and Technology (FCT), University of Kelaniya, Sri Lanka
18th December 2021

Within the practitioner of containerization, various
container management technologies are available. Docker,
Rkt and Linux containers are a few container management
technologies [1]. Among them, Docker is the most trending
and most popular container management technology [3].
According to the official Docker documentation, currently,
eleven million developers are engaged with Docker and
thirteen billion of Docker images have been downloaded
[4]. Database Management Systems are the specific
software packages that provide the dedicated technology
and facility to store and retrieve data in efficiently and
appropriately [5]. A Database Management System stores
data in a most prominent way to retrieve, manipulate,
manage and produce information.

Fig. 1: Container architecture [2]

Relational Database Management Systems (RDBMS)
are a specific database management system specification,
which are based on the relational model and Structured
Query Language (SQL). Most modern database systems are
RDBMSs. MySQL, PostgreSQL, IBM DB2, MS SQL
Server and Oracle are the best examples for the RDBMSs
[6].

Within the existing research studies, the authors have
evaluated the database management systems by considering
the taken time to particular SQL queries and response time
in commonly.

Currently, there is a trend to shift software services and
applications to the container-native methodology. Hence
database management systems are also shifting to the
containers. There are a lot of scholarly research articles to
evaluate and measure the performances of databases and
database management systems. Therefore, this research
activity was aimed to do an experimental study on the
database management system deploying infrastructures for
the distributed systems.

The overall research study provides answers to the
below research questions.

RQ1: How to mechanize the Docker based Database
Management Systems to have a persistence data storage
approach?

RQ2: What kind of container-based infrastructure level
security approaches can be applied to the Docker based
Database Management Systems?

RQ3: How are the container resource usage and
utilization from the host computer infrastructure for
Database engine activities?

RQ4: What are the differences among manually
deployed Database Management System containers over
ready-made Docker image approaches?

II. METHODOLOGY
For the study, the experimental platform was launched

on a cloud-based Linux environment. To launch the Docker
service, an Ubuntu computer host was used. Canonical
Ubuntu 18.04 operating system was used for the host
computer infrastructure. Host computer-based architecture
was GNU/Linux 4.15.0-112-generic x86_64. As well, the
host computer was with two virtual CPUs, 15 GB internal
memory and 1 Gbps network bandwidth. An external block
volume was attached to the host computer. The directory
path of the host computer: /home/$user was mounted to the
block volume.

On the above-mentioned host computer, the Docker
platform was launched. The launched Docker
configurations are mentioned in table 1. (Within table 1,
these abbreviations are used for the easiness of the
representation: API = Application Programming Interface,
OS = Operating System)

It presents the Docker version, Docker API version
supporting based operating system architecture.
Table 1: Configured Docker details

Option Detail for configuration

Client: Docker Engine - Community

Version 19.03.9

API version 1.40

OS/Architecture Linux/amd64

Server: Docker Engine - Community

Version 19.03.9

API version 1.40

OS/Architecture Linux/amd64

Within the above Docker platform, two internal Docker
networks were established using the bridge drivers. One
network (N1) was with 172.17.0.0/16 as the subnet and
172.17.0.1 as the gateway. The second network (N2) was
with 172.22.0.0/16 as the subnet and 172.22.0.1 as the
gateway. For the experiment study, two RDBMSs were
used: MySQL and PostgreSQL. Those two RDBMSs were
launched on two separate Ubuntu bionic Docker containers
within the above mentioned two Docker networks. Table 2
presents the infrastructure details for the distributed
RDBMS Docker farm. The term IP was abbreviated for the
internet protocol.

ISSN 2756-9160 Page 8

INTERNATIONAL CONFERENCE ON ADVANCES IN TECHNOLOGY
AND COMPUTING (ICATC-2021)

Faculty of Computing and Technology (FCT), University of Kelaniya, Sri Lanka
18th December 2021

Table 2: Docker container details

Container

Network

Container
IP

Container
port

Host port

MySQL
conatiner

N1 172.17.0.2 3306 3300

PostgreSQL
container N2 172.22.0.2 5432 5400

For the experimental study, MySQL version 5.7.30 and
PostgreSQL version 12.6 was used. For the MySQL
RDBMS, a database with 24 tables was used. For the
PostgreSQL RDBMS, a database with 30 tables was used.

For each container, the specific data and file paths were
mounted to the path, /var/lib/docker/volumes on the host
computer. By default, MySQL and PostgreSQL RDBMSs
are serving through the port 3306 and 5432. Within the
experimented approach, each port was mapped to 3300 and
5400 respectively for the host ports. By performing data
retrieval operations on the RDBMSs, the host container
resource usage and utilization was evaluated. To launch
each RDBMS Docker container, two approaches were
followed. Each approach is defined below, and each
approach was evaluated with their behaviors.

Approach 1: Launch Ubuntu bionic Docker container
and install the respective RDBMS service (Used as the main
approach for the study)

Approach 2: Launch RDMS Docker container using
Docker images/templates.

III. RESULTS AND DISCUSSION
After launching the experimental platform with the

RDBMS Docker containers, specific operations and
analyzing the proposed disturbed mechanism, was
performed.

A. Persistence data storage/archiving
The Docker container-based platform was launched on

a host computer infrastructure. To keep a more data
persistence, the main directory path of the Docker
(/var/lib/docker/) was linked to the path, /home/$user (to
the block volume path) of the host computer infrastructure.
Hence, specific objects and configurations of the Docker
could be attached to the block volume. Those very specific
Docker objects and configurations were container, images,
volumes, network, Docker swarm, plugins, temporary files,
etc. Therefore, as the primary mechanism, the whole Docker
based infrastructure was with persistence data storage
mechanism.

Furthermore, to keep a persistence data storage and
archiving approach for each container separately, data
volumes were mounted to each container. For the MySQL
RDBMS Docker container, the paths /var/lib/ and /var/log/
are carried more specific data and configurations for the
database engine. Hence those two directory paths were
mounted to Docker data volumes. To mount those two
paths, two different approaches were used, and those two
approaches are defined below.

• Both /var/lib/ and /var/log/ directory paths were
mounted to one Docker data volume.

• For /var/lib/ and /var/log/ data directory paths were
mounted two separate Docker data volumes.

Between above two approaches, mounting two Docker
data volumes was more strategic since if a Docker volume
crashed, it does not affect the rest of Docker data volume.

Same as above, for the PostgreSQL RDBMS Docker
container, the data directory path, /var/lib/postgresql/ was
identified as carrying most key data and configurations of
the service. Hence, the identified directory path was
mounted to a Docker data volume.

After making a stable database management system on
two Docker containers, two Docker containers were crashed
by stopping the containers and jamming with installing
different unwanted packages and dependencies. Thereafter,
respective data volumes were re-attached for the new
Docker containers which carry the RDBMS service. Then
without losing any data or configurations, the new Docker
container was restored to previous data and configurations.

Without detaching the previously attached Docker data
volumes from containers, attachments for new Docker
containers were possible. But assignment of the previous
host port to the new Docker container’s host port was not
possible even if the previous container was stopped on the
Docker engine. Therefore, essentially, previous container
needed to be removed to assign the host port for the new
Docker container same as the previous container.

Those all-mounted Docker data volumes were directly
linked with host computer infrastructure. Hence any file or
directory of those data paths, could be faced for any such
operation on the file system (copy/rename/delete/move).

B. Secured approchess for the infrastructure
For the experimental setup, each container port was

mapped for a host port. For the MySQL RDBMS Docker
container perspectival: 0.0.0.0:3306  3300/tcp and for the
PostgreSQL RDBMS Docker container perspectival:
0.0.0.0:5432  5400/tcp was applied as the port mapping.
As a usual practice, attacks or vulnerabilities are looking for
default ports of any services. Hence by mapping each
service port (same as container port in this case) was
mapped to arbitrary port value. Hence guessing port values
are not possible for this case and the proposed approach is
bringing a valuable security concern for the infrastructure.

As well, the default service port of each container was
changed for arbitrary values by changing the service
installation configurations at the next stage. Then newly
assigned ports were mapped for a new set of host ports.
Therefore, default port values are not available for any of
the layers. Hence, guessing port values from an external
person or device was mitigated.

Both RDBMS Docker containers are in two isolated
Docker networks. By using static network address
translation (NAT) for each multiple private IP addresses of
the containers, all inward and outward traffic was handled
in a more securely. Without exposing the container IP

ISSN 2756-9160 Page 9

INTERNATIONAL CONFERENCE ON ADVANCES IN TECHNOLOGY
AND COMPUTING (ICATC-2021)

Faculty of Computing and Technology (FCT), University of Kelaniya, Sri Lanka
18th December 2021

address to the outside world, the public IP address of the
host computer was exposed to the outside world. Therefore,
without translating the container IP addresses to the external
IP addresses, internal IP addresses could not be routed to the
external world. Furthermore, the NAT mechanism was
assured that all outbound traffic is from valid and known
external IP addresses. Therefore, the approach helps to
enhance the infrastructure security, all incoming and
outgoing requests go through a translation process. The
process ensures to qualify and/or authenticate all incoming
traffic.

As described in section III.A, the main data and file
directory of Docker was linked to the path: /home/$user.
That directory path was privileged only for the super user.
Therefore, without any command or operations could not be
done for that directory path without super user credentials.
Hence that ensures the security of the approach.

C. Container resource usage & utilization
To measure and evaluate the internal resource

consumption of each RDBMS Docker container from the
host computer infrastructure, main resource metrics were
measured for the idle state and data operating states.

Table 3 presents primary details of each Docker
container and resource usage from the host computer
infrastructure. For the ease of documentation purposes,
below abbreviations were used for table 3. [Container ID
= the unique identifier or the Docker container within the
launched Docker platform, Name = assigned container
name, CPU% = the percentage of the container consuming
CPU from the host computer, Memory% = the percentage
of the container consuming memory from the host
computer, MEM_Usage/Limit = total memory which is
used by the container and the allowed total memory to use,
NET I/O = the overall amount of the data which the
container has sent and received over the network interface
and PIDs = created the total amount of the processors or
threads by the container][7].

Table 3: Container resource usage and utilization

Container
measurement

Measurement value of each container

MySQL container PostgreSQL
container

Container ID c35b95254633 db7f7cee8390

Name MySQL Container PGSQL Container
CPU% (for idle

states) 0.25% 0.38%

Memory% 0.07% 0.15%

MEM_Usage/Limit 10.51MiB /
14.68GiB

21.85MiB /
14.68GiB

NET I/O 12.9GB / 2.23GB 98.8GB / 5.85GB

PIDs 50 8

The table 4 presents how the container host computer
infrastructure is behaving for host resources while running
Docker engine and other embedded services.

Table 4: Host computer resource usage for container host

Host computer
measurement

Measurement value of single host
computer

CPU% (for idle states) 0.9%

Memory% 0.4%

PIDs 197

For further evaluation purposes, the same MySQL and
PostgreSQL RDBMS services were launched on a separate
computer instance. For that computer instance was with the
same configurations of the Docker hosted computer
infrastructure. As well, the same databases were used for the
computer instance-oriented study. This case was named as
the β case. The table 5 presents the measurement values for
the computer host for the β case for the idle state of the
RDBMSs.
Table 5: Host computer resource usage for case β

Host computer
measurement

Measurement value of single host
computer

CPU% (for idle states) 2.1%

Memory% 2.7%

PIDs 124

According to table 4 and table 5, Docker host computer
infrastructure is consuming lower resource usage from the
host computer. However, when compared with Docker host
and case β host, slightly lower usage is for Docker host.

D. Docker conatiner expanding & shrinking
Docker containers are running by using minimal

resources from the host computer infrastructure. For any
such kind of heavy processes, Docker containers consume
higher resources from the host computer infrastructure.
Within the experimental study, for data retrieve operations,
container expanding and shrinking was visualized.

For the MySQL RDBMS container, four hundred forty-
eight thousand data records were retrieved. The fig. 2
presents CPU usage: before data retrieval, while data
retrieving and after retrieving the data.

In the fig. 2, the x-axis presents the time in the GMT
+5.30-time zone and the y-axis presents the CPU usage as
the percentage.

ISSN 2756-9160 Page 10

INTERNATIONAL CONFERENCE ON ADVANCES IN TECHNOLOGY
AND COMPUTING (ICATC-2021)

Faculty of Computing and Technology (FCT), University of Kelaniya, Sri Lanka
18th December 2021

Fig. 2: CPU usage for data retrieving for MySQL container

Up to the peak point of the graph (20:54:56), the
container was expanded for the operation of data retrieval.
After generating the results, the container was shrunken.

For the PostgreSQL RDBMS container, three hundred
thousand data records were retrieved. The fig. 3 presents the
CPU usage: before data retrieval, while data retrieving and
after retrieving the data for the PostgreSQL Docker
container.

In fig. 3, the x-axis presents the time in the GMT +5.30-
time zone and the y-axis presents the CPU usage as the
percentage.

Up to the peak point of the graph (21:57:43), the
container was expanded for the operation of data retrieval.
After generating the results, the container was shrunk the
same as for the MySQL Docker container.

Fig. 3: CPU usage for data retrieving for PostgreSQL container

According to the fig. 2 and fig. 3, the two graphs are with
few differences due to the internal architectural differences
of database management engines.

Most scholarly articles were presented that the Docker
containers are shrinking and expanding while shipping and
operating on the container engine. Hence above graphical
representation of the container expanding and shrinking are
the most theoretical proof of the container stretching feature.

E. Feature differentiate between Approach 1 & 2
Within the experimental evaluation, to launch the

RDBMS Docker container, two approaches were applied.
Those are presented in Approach 1 and Approach 2 under

section II. The table 6 presents the feature to differentiate
between the launched container approaches for the
Approach 1 & 2.
Table 6: Feature difference between approach 1 & 2

Approach 1 Approach 2

Difficult to lauch Easy to launch

Easy to cutomize the installation Customized installation is
difficult

Need to install external
dependencis

No need to install external
dependencies

IV. CONCLUSION
Docker containers are high trending computer

infrastructure technology. To launch any software service or
application is possible on the Docker based infrastructure.
After launching the Docker engine on the Ubuntu host
computer, MySQL and PostgreSQL RDBMS Docker
containers were launched within two networks separately to
obtain answers to the pre-defined research questions.

The experimental platform was with host computer
perspective, Docker engine perspective and container
perspectival different data storage mechanisms. Those are
with mounting block volumes for the host computer and
Docker data volumes for Docker containers. Therefore,
those aspects are answered for the RQ1. The experimented
setup was with different secured approaches for ports,
network and data directory perspectival. Therefore, it
denotes that, the established platform is with more secured
approach. Hence those are answered for the RQ2.

For the Docker container perspectival, those containers
used only limited and minimal resources from the host
computer infrastructure. As well, only for the higher
operations, the containers expanded and other idle states,
containers were shrunken. Therefore, those are answered for
the RQ3. To deploy service on Docker, image usage or
deploying the service from scratch on an operating system
container are possible. Most of the pros and cons are
available for both mechanisms and those are answered for
the RQ4.

Docker containers are currently used mostly for testing
and deployment of software applications. But today the
world is moving with data science, image processing,
artificial intelligence, Internet of Things and etc. for
containerization. Therefore, containers will play a major
role in the Information Technology era.

REFERENCES

[1] John Paul Martin, A. Kandasamy, and K. Chandrasekaran. 2018.
Exploring the support for high performance applications in the
container runtime environment. Hum.-centric Comput. Inf. Sci. 8, 1,
Article 124 (December 2018), 15 pages.
DOI:https://doi.org/10.1186/s13673-017-0124-3

[2] B. I. Ismail et al., "Evaluation of Docker as Edge computing
platform," 2015 IEEE Conference on Open Systems (ICOS), 2015,
pp. 130-135, doi: 10.1109/ICOS.2015.7377291.

ISSN 2756-9160 Page 11

INTERNATIONAL CONFERENCE ON ADVANCES IN TECHNOLOGY
AND COMPUTING (ICATC-2021)

Faculty of Computing and Technology (FCT), University of Kelaniya, Sri Lanka
18th December 2021

[3] 8 surprising facts about real Docker adoption, 2021. [Online].
Available: https://www.datadoghq.com/docker-adoption/.
[Accessed: 25- Jun- 2021].

[4] Empowering App Development for Developers | Docker, Docker,
2021. [Online]. Available: https://www.docker.com/. [Accessed: 25-
Jun- 2021].

[5] Database Management System Tutorial - Tutorialspoin,
Tutorialspoint.com, 2021. [Online]. Available:
https://www.tutorialspoint.com/dbms/index.htm. [Accessed: 25-
Jun- 2021].

[6] SQL - RDBMS Concepts - Tutorialspoint, Tutorialspoint.com,
2021. [Online]. Available: https://www.tutorialspoint.com/sql/sql-
rdbms-concepts.htm. [Accessed: 25- Jun- 2021].

[7] docker stats, Docker Documentation, 2021. [Online]. Available:
https://docs.docker.com/engine/reference/commandline/stats/.
[Accessed: 25- Jun- 2021].

[8] F. Paraiso, S. Challita, Y. Al-Dhuraibi and P. Merle, "Model-Driven
Management of Docker Containers," 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD), 2016, pp. 718-725, doi:
10.1109/CLOUD.2016.0100.

[9] J. Stubbs, W. Moreira and R. Dooley, "Distributed Systems of
Microservices Using Docker and Serfnode," 2015 7th International
Workshop on Science Gateways, 2015, pp. 34-39, doi:
10.1109/IWSG.2015.16.

[10] Peinl, R., Holzschuher, F. & Pfitzer, F. Docker Cluster Management
for the Cloud - Survey Results and Own Solution. J Grid Computing
14, 265–282 (2016). https://doi.org/10.1007/s10723-016-9366-y

[11] D. Liu and L. Zhao, "The research and implementation of cloud
computing platform based on docker," 2014 11th International
Computer Conference on Wavelet Actiev Media Technology and
Information Processing(ICCWAMTIP), 2014, pp. 475-478, doi:
10.1109/ICCWAMTIP.2014.7073453.

[12] M. T. Chung, N. Quang-Hung, M. Nguyen and N. Thoai, "Using
Docker in high performance computing applications," 2016 IEEE
Sixth International Conference on Communications and Electronics
(ICCE), 2016, pp. 52-57, doi: 10.1109/CCE.2016.7562612.

[13] M. G. Xavier, I. C. De Oliveira, F. D. Rossi, R. D. Dos Passos, K. J.
Matteussi and C. A. F. D. Rose, "A Performance Isolation Analysis
of Disk-Intensive Workloads on Container-Based Clouds," 2015
23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, 2015, pp. 253-260, doi:
10.1109/PDP.2015.67.

ISSN 2756-9160 Page 12

