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Abstract: Accurately predicting the software development 

effort is very crucial when delivering the software systems on 

time, within the budget and with the required functionality. 

Overestimation of the software development effort can lead to 

losing the projects whereas underestimation can cause budget 

and schedule overruns. The development effort of a software 

project depends on various factors and these effort factors 

associated with the freelance software development are different 

from those of traditional software development. Software 

development companies employ various proprietary tools in 

their projects for their planning, development, testing, etc. 

However, freelance software developers functioning under tight 

budgetary constraints are not in a position to afford them. As a 

result, they tend to use free and open-source tools for their 

software developments. There are various types of software 

effort estimation models proposed, published and practiced in 

the industry. However, there is no such software effort 

estimation model specifically proposed to estimate the effort of 

freelance software development. The main objective of this 

paper is to extend Use Case Point-based software effort 

estimation for the open-source freelance software development. 

Initially, details of open source software projects were collected 

from several freelance software developers. Based on the use 

case diagrams, Use Case Points counts are then calculated for 

each project. Taking other effort drivers associated with open 

source freelance software development also into account, we 

then estimate the effort of each software development. Our aim 

is to explore the viability of using Use Case Points as the main 

effort driver in estimating the effort of open source freelance 

software development. 

Keywords: Freelance software developers, Open source software 

development, Software effort estimation, Use Case points 

I. INTRODUCTION 

Accurately predicting the software development effort of 
freelance software developers is very crucial when delivering 
the software systems on time, within the budget and with the 
required functionality. Overestimation of the software 
development effort can lead to losing the projects, whereas 
underestimation can cause for budget and schedule overruns. 
Since this research is based on the software effort estimation 
(SEE) of open source (OS) the freelance software 
development, it is really important for the freelance software 
developers to make accurate predictions of effort the software 
projects. There are no SEE models specifically proposed to 
estimate the effort of OS freelance software development. 

A. Freelance Software Development  

With the rapid growth of Information Technology (IT), 
the self-employment rate of the IT industry has started to 
increase. Most organizations and people tend to get away 
from the traditional methods of handling businesses. Since 
the businesses move towards technology-based solutions and 
systems, hiring a freelancer to come up with better solutions 
has become a more cost-effective option. It is really important 
for the freelance developers to properly estimate the effort of 
the software projects not only to land the projects but also to 
deliver the projects within the time and budget. Even though 
there is a rapid increment in the self-employment and 
freelancing rate the freelancers find it hard to estimate the 
effort of the projects accurately. Therefore, it is important for 
freelance developers to identify the factors that affect the 
effort of an Open Source Software (OSS) project. These 
factors are known as effort drivers. The effort drivers 
associated with freelance software development are different 
from those of traditional software development. In a software 
company, a software project is performed by a team, which 
consists of software developers, business analysts, a tech 
lead, a team lead, etc. However, freelancers tend to work 
alone or in very small groups. 

B. Open Source  Software Development 

 OSS developers are usually expected to use their own 
hardware and software tools. Similarly, OSS developers are 
typically not owned or controlled by any organization to 
monitor and manage their software development process [1]. 
Software development companies use various proprietary 
tools in their software projects in development, testing, 
planning, etc. phases. However, freelance software 
developers functioning under tight budgetary constraints are 
not in a position to afford them. As a result, they tend to use, 
free and OS tools for their software developments. 

C. Use Case Points based model 

There are various types of the SEE models proposed, 
published and practiced in the industry. Many of these models 
use software size as the main effort driver for their 
estimations. Among the various types of software size 
measures proposed, Lines of Code (LOC) is the most widely 
used measure in sizing software products. However, the LOC 
is only available in the latter stages of the development of a 
software product. Therefore, as an alternative, Function 
Points (FP), a measure based on the functionality of a 
software product has been introduced to quantify the software 
size in the early stages of software development. However, 
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the service of trained experts is required to get the FP count 
of software system accurately and thereby the freelance 
developers are not in a position to use FP for sizing their 
software products. Most of the modern software 
developments are carried out using Object-Oriented System 
Analysis and Design (OOSAD) methodology. In the early 
stages of the software development life cycle, OOSAD 
requires to draw use case diagrams to identify the 
requirements and the functionality of the system. As a result, 
an extension of FP, based on use cases called Use Case Points 
(UCP) has been introduced. Therefore, in this research, we 
discuss the viability of using UCP as the software sizing 
measure of each software project. 

D. Software Effort Estimation 

Among the various SEE methods, the analogy is 
considered as the most commonly used method. Analogy 
based estimation has shown better evaluation results 
compared to other machine learning and non-machine 
learning methods [2]. Since analogy based SEE models are 
able to learn from previous experiences analogy compares the 
effort drivers of the proposed software project to previous 
software project data to estimate the effort of most similar 
projects.  

The goal of this research is to extend a SEE model to 
accurately predict the effort of OSS projects developed by 
freelance software developers. In this research, we look into 
OSS projects of freelance software developers. First, we 
identify the effort drivers of freelance OS SEE. Since UCP is 
selected as the software sizing measure of this research, we 
examine the use case diagrams of each software project. Based 
on the use case diagrams, the UCP count of each software 
project is calculated. The identified effort drivers with UCP 
count is applied to an analogy based SEE model to estimate 
the effort of each software development. Finally, the 
validation of the SEE model is done using n-fold cross-
validation. 

The structure of this paper is as follows: Section 2 
presents an overview of related work. Section 3 describes the 
methodology that this research is conducted. Section 4 
presents and discusses the results. Finally, in Section 5 we 
present the conclusions and future work. 

II. RELATED WORK 

There are different types of SEE in the industry by the 
practitioners. COCOMO, COCOMO II, WALSTON-FELIX 
MODELS, and SLIM are some of them. They use LOC as 
their main effort driver for their estimations. Since LOC is 
only available in the latter stages of software development, 
FP is used as an alternative. FP is a software sizing measure 
based on the functionality of software projects. It has been 
introduced to quantify the software size in the early stages of 
software development [3]. FP was originally proposed for the 
procedural systems, but it has now been extended to many 
other software development paradigms such as Object-
Oriented systems [4], embedded systems and real-time 
systems [5], [6]. However, there is an international standard 
for counting FP and the service of trained experts is required 
to get the FP count of software systems and thereby the 
freelance developers functioning under tight budgetary 
constraints are not in a position to use FP for sizing their 
software products [7]. Nowadays, most of the modern 
software development projects are carried out based on 

OOSAD methodology. In the early stages of the software 
development life cycle, OOSAD methodology uses use case 
diagrams to identify the requirements of the system. As a 
result, an extension of FP based on use cases called UCP has 
been introduced by Gustav Karner in 1993 and UCP is 
evolved from FP [3]. UCP requires the use case diagrams and 
use case descriptions of the software projects that we consider 
to calculate the effort [8]. 

A. Estimation by analogy  

Effort estimation by analogy has become more popular 
within the software development research community 
because of its higher performance in prediction when 
different data types are used. The concept of this method has 
been simplified such that the effort of a new project can be 
estimated by reusing efforts about similar, already 
documented projects in a dataset, wherein a first step one has 
to identify similar projects which contain the useful 
predictions [9]. The predictive performance of analogy based 
SEE relies heavily on the selection of two interrelated 
parameters: number of nearest analogies and adjustment 
strategy [8]. There are many analogy-based SEE models that 
have been published by many researchers. However, ESTOR, 
ACE, and ANGEL are the most commonly used models in 
predicting effort of software development. 

1) Estor: ESTOR is an early implementation of an 
analogy-based tool to estimate software project effort [10]. It 
was developed by Mukhopadhyay et al. in 1992 [11] in order 
to evaluate the feasibility of case-based reasoning in SEE. 
However, in accordance with the concept of case-based 
reasoning, ESTOR uses the case-based reasoning and the 
three best analogies to compute effort based on the Inverse 
Rank Weighted Mean (IRWM) [12]. 

2) ACE: ACE (Algorithmic Cost Estimator) was 
developed by Emilie Mendes et al. in the late 90s and it 
focuses on exploring the benefits of analogy-based 
estimation. It calculates the difference between the target 
project and each calculated project in the database. ACE 
principles involve the use of similarity functions which 
should be defined to be able to compute the similarity 
distance of each analogy with respect to the target project. 
Also, the similarity function helps in the ranking of analogies 
in terms of the most similar and least similar [10],  [12]. 

3) Angel: Analogy based effort estimation methods 
generate new predictions based on the assumption that similar 
projects with respect to features description have similar 
efforts. The authors of [13] proposed a tool called ANGEL to 
predict the effort of a project by using the analogies and 
estimates provided by the completed projects. ANGEL uses 
historical effort data and the size of completed projects to 
predict the estimation of the new project [14]. There are many 
variables that affect the effort estimation. Not all the variables 
selected will be helpful when finding good analogies. Some 
variables may create noise. There, the authors [13] have 
automated the process and provided an environment in which 
data can be processed, analogies found and estimates 
produced. This supports the collecting, storing and 
identifying the most similar projects in order to estimate the 
effort for a new project. ANGEL is based upon the 
minimization of Euclidean distance in multi-dimensional 
space. 
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B. Model comparison 

ACE is known to provide a lower degree of accuracy [11]. 
ESTOR and ANGEL are said to use the same principles in 
order to provide a list of most similar analogies though, the 
content of the list is not always accurate.  Moreover, ANGEL 
is computationally expensive as compared to the other 
methods since it saves and computes similarity for all cases. 
ESTOR requires additional domain knowledge in order to 
succeed to accurately estimate projects from very different 
environments. Therefore, in this research, we extend the 
ANGEL model to estimate the effort of OSS projects 
developed by freelance software developers. 

However, there are some limitations to the ANGEL tool [14]. 

● The values of the effort factors are standardized on the 
basis that each effort factor contributes equally to the 
value of the target effort factor. 

● No specific method to handle out of range values.  

● No specific method to handle "multiple-exact- match" 
conditions.  

● No specific mechanism to handle "no-match" condition 

C. Performance measures 

There are many performance measures that researchers 
use in SEE such as MRE (Magnitude of Relative Error), 
MIBRE (Mean Inverted Balanced Relative Error), PRED(25) 
(percentage of predictions failing within 25%), MMRE 
(Mean of Magnitude Relative Error), etc. MRE measures the 
error ratio between the actual effort and the predicted effort 
and it can be explained from the equation (1) where Ei is the 
actual effort and Ei is the predicted effort.  

   MRE = | Ei-Ei
| | / Ei            (1) 

However, MMRE is considered as the de facto standard 
of all the performance measures out of them [15]. The 
equation (2) presents the mean of all the MRE values. 

         MMRE = (∑i=1
nMRE) /n       (2) 

III. METHODOLOGY 

The methodology of this research is conducted via four 
phases. In the first phase of the study, a thorough review of 
the literature is done in order to identify the effort drivers of 
freelance OSS development. Next, we collect details about 
freelance OSS projects from several freelance software 
developers.  The third phase of the study is focused on 
selecting an appropriate SEE model and extending it from 
traditional software development to OS, freelance software 
development. In the fourth phase, the outcome of the 
extended model is tested and validated. 

A. Identifying Effort Drivers 

In software companies, a software project is handled by a 
group of people, which consist of software developers, 
business analysts, a tech lead, a team lead, etc. [16]. However, 
freelancers tend to work alone or in very small groups. Expert 
judgment is one of the most popular effort estimation 
methods used in the software industry. This would be a costly 
option for a freelancer. Therefore, freelance software 
developers are incapable of hiring an industry expert. 
Software companies use various proprietary tools for 
software testing, coding, managing projects, etc. Freelancers 

are not in a position to afford them. As a result, they tend to 
use, free and OS tools for their software developments. 

1) UCP Count: In this research, UCP is selected as the 
software sizing factor of the freelance, OSS projects. First, 
the UCP count of each project is calculated. Most of the 
Technology Complexity Factors  (TCF) such as special user 
training facilities required, access for third parties, response 
or throughput performance objectives, etc. and 
Environmental Complexity Factors (ECF) such as familiarity 
with Rational Unified Process, part-time workers, lead 
analyst capability, etc. are irrelevant and have no effect in 
freelance OSS development. Due to this reason, TCF and 
ECF can be omitted [17]. Therefore, Unadjusted Use Case 
Points (UUCP) is considered as the main effort factor in 
sizing the OSS products. 

 According to Karner [3], the actors in a use case model 
can be categorized as simple, average and complex.  

· Simple: Weighting factor 1 

· Average: Weighting factor 2 

· Complex: Weighting factor 3 

The total unadjusted actor weight (UAW) is measured by 
counting the number of actors in each category multiplying 
each total by the defined weighting factor and then adding the 
products 

The use cases are also categorized into three categories 
and they are simple, average and complex [3]. This 
categorization depends on the number of transactions, 
including the transactions in alternative flows. However, 
included and extending use cases are not considered. A 
simple use case has 3 or fewer transactions; an average use 
case has 4 to 7 transactions, and a complex use case has more 
than 7 transactions. A weighting factor is assigned to each use 
case category: 

· Simple: Weighting factor 5  
· Average: Weighting factor 10  
· Complex: Weighting factor 15. 

The unadjusted use case weights (UUCW) are calculated 
by counting the number of use cases in each category, and 
then multiplying each category of use case with its weight 
and adding the products. The UAW is added to the UUCW to 
get the UUCP. 

2) Application Domain: The software industry as such 
does not have a specific domain. Rather, this industry would 
provide services or enable other services by applying the right 
technologies. A software domain is nothing but the subject 
area in which a particular project belongs to. It can be 
scientific development, business development, health/ 
medical industry, embedded systems, defense systems, etc. 
The demand for each domain can vary. Some domain may 
have high demand while the demands for other domains is 
low [18]. Some developers could be more comfortable in 
particular domains while some are new to those domains. 
This means some developers may have academic training or 
substantial work experience in a particular domain and they 
understand the design, architecture, domain rules, etc. 

3) Programming language: The programming 
language of an OSS project is one of the important aspects to 
be considered. It should be selected based on the project 
requirements. Different programming languages are suitable 
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for different application domains. For example, Python is 
usually used for scientific systems, whereas PHP and Java are 
used for web developments. The choice of selecting a 
programming language for developers depends on the 
required functionalities of the software project [19]. 

The programming language selected for a given project 
should be sufficiently expressive to cover the requirements. 
On the other hand, an incorrect language selection may affect 
the solution from reaching the expected level. Some 
languages are expressive thanks to their verbose nature. It 
allows more expressivity and hence more choices to be able 
to make use of simple syntax. Effectively, the simple syntax 
would eventually result in the developer and reader’s 
familiarity with the code quicker than having the reader being 
exposed to some new complex syntax [20].  

4) Developer experience: Freelance software 
developers land projects through contacts of their previous 
projects. The experience in freelancing can't be measured 
with the time because some freelance software developers 
could have worked with fewer projects for a long duration of 
time while another set of developers would have worked with 
many projects in a short period of time. Therefore, the 
number of projects they have completed is used as the 
measurement of the freelance developer's experience. In 
online crowdsourcing platforms or online market places, they 
get projects based on their ratings and feedbacks. Rating and 
feedbacks are given by the project owners of previously 
completed projects. Therefore, having a good experience is a 
clear advantage to land more projects [18]. If a developer has 
previous experience it easy to understand the requirements. 
When developing a particular feature or solving a particular 
problem it would take less time to come up with a better 
solution. Generally, specific skills and depth of experience 
matter a lot when dealing with complex tasks [18]. 
Experience helps the developers to select a better approach to 
provide a solution to a requirement. 

B. Data Collection 

We have considered OSS projects developed in multiple 
domains, by software development freelancers in Sri Lanka 
with different levels of experience. The domains include 
business applications, embedded systems, data science 
projects, etc. The complexity of these OSS projects is 
different and the time taken to complete each project is also 
different. 

We have collected the details of 13 OSS projects from 9 
freelance software developers. Based on the use case 
diagrams, the UUCP count is calculated for each project. 
There can be some inefficiencies in the use case diagrams. 
These inefficiencies will affect when calculating the UCP of 
those projects. Therefore, the total effort estimation of those 
software projects could vary from its real values. We have 
identified the erroneous diagrams by grouping the projects 
according to their domain and by comparing each project 
according to its UCP and the actual effort. Details of the 
collected OSS projects collected from freelance software 
developers are shown in Table I. 

 

 

 

TABLE I. OPENSOURCE SOFTWARE PROJECTS OF FREELANCE 

SOFTWARE DEVELOPERS 

 

No Developer 

Experience 

Language Domain UUCP Effort 

(Hours) 

1 17 Java BA 247 201 

2 19 Java BA 304 265.5 

3 21 Java BA 258 264 

4 25 PHP BA 231 201 

5 19 PHP BA 216 209.5 

6 23 PHP BA 192 210 

7 16 C ES 177 224.5 

8 19 C ES 168 191 

9 29 Python ES 204 188 

10 27 Python ES 117 171 

11 17 Python SA 71 140 

12 23 Python SA 73 133 

13 18 Pythons SA 95 97.5 

BA: Business Application, ES: Embedded systems, SA: Scientific Application 

 
Since data values are on different scales, we standardize 

them using the equation given in (3) where X is the actual 
value, Xmin is the minimum effort of the data set and Xmax is 
the maximum effort of the data set. 

X = (X-Xmin)/(Xmax-Xmin)        (3) 

 

1) Similarity Measure: A similarity measure is used to 
calculate the similarity between projects based on how close 
the distance between projects according to the type of each 
attribute. The are many measurement techniques like 
Euclidean, Manhattan, and Minkowski that can be used to 
measure the distances between projects. Angel uses 
Euclidean distance is measuring the distance (D) between two 
software project points in the plane with coordinates (x, y) 
and (x|, y|) is given by equation (4). 

      D = [(x-x|)2 +(y-y|)2]1/2
         (4) 

 

2) Number of Analogies: The chosen analogy is 
defined by how many similar projects are used to compare to 
measure the effort of the OS software project. Basically, there 
are two ways to select analogies. They are fixed and dynamic 
analogy selection. This research adopts fixed analogy 
selection and suggests using one closest analogy (K = 1),  two 
closest analogies K = {1, 2}, three closest analogies K = {1, 
2, 3}. K can be defined through the following equation where 
N is the number of data elements. The equation (5) denotes 
the value of K. 

K = (N)1/2       (5) 

 

3) Analogy Adaptation: The effort of the new project is 
calculated by using certain statistical techniques. There are 
four types of analogy adaptations that can be applied. They 
are the Closest Analogy (CA), the mean of closest analogies, 
the median of closest analogy, and IRWM of closest analogy.  

 

4) Analogy Adaptation Rules: The effort estimation of 
a new project is done by dividing the actual effort of the old 
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project effort (𝐸𝑓𝑓𝑜𝑟𝑡𝑜𝑙𝑑) with the size of old project (𝑆𝑖𝑧𝑒𝑜𝑙𝑑) 

then multiply with the size of new project (𝑆𝑖𝑧𝑒𝑛𝑒𝑤). Since the 
sizing factor of this model is UUCP, the equation (6) denoted 
the formulations of these adaptation rules [21]. 

𝐸𝑓𝑓𝑜𝑟𝑡𝑛𝑒𝑤 = (𝐸𝑓𝑓𝑜𝑟𝑡𝑜𝑙𝑑 /𝑆𝑖𝑧𝑒𝑜𝑙𝑑) × 𝑆𝑖𝑧𝑒𝑛𝑒𝑤           (6) 

 
The n-fold Cross-Validation technique is one of the most 

used approaches by practitioners for model selection and 
error estimation of classifiers. The dataset is split into k 
number of subsets. Then, a portion of the split data set is used 
for testing while the rest of the data are used to learn the 
model. This is done iteratively [22]. Finally, by comparing 
the actual effort against the estimated effort, we validate our 
effort model using n-fold cross-validation. When a specific 
value for n is selected, it could be used in place of 'n' with the 
reference to the model, such as n = 3 becoming 3-fold cross-
validation. The model is tested with a portion of data while 
holding the rest of the dataset as the training set. This process 
is iterated until the remaining groups as a training data set. 
Data sets are randomly divided into training data and testing 
data, with a percentage of 92% and 8% respectively. The 
accuracy is tested by using MMRE.  

IV. RESULTS 

We have tested the data with four analogy adaptation 
methods and the most accurate adaptation method is selected 
by comparing the MMRE of each method.  

5) Closest Analogy: The closest analogy focuses on 
selecting from the closest project, which means the value of 
K=1. The estimated effort values for the closest analogy of 
each project with MRE values are shown in Table II. 

6) Mean of the Closest Analogy: The mean of closest 
analogies is the adaptation analogy obtained by calculating 
the average effort driver from as many as K > 1 selected 
analogy. The estimated effort values for the mean of the 
closest analogies with MRE values are shown in Table III. 

 
TABLE II. CLOSEST ANALOGY 

 

Project 

No 

Estimated Effort 

(hours) 

Actual 

Effort 

(hours) 

MRE 

1 215.72 201 0.07323 

2 311.07 265.5 0.17164 

3 225.32 264 0.14649 

4 252.66 201 0.25699 

5 236.25 209.5 0.12768 

6 167.06 210 0.20445 

7 201.23 224.5 0.10364 

8 213.08 191 0.11563 

9 231.93 188 0.23366 

10 213.16 171 0.24658 

11 71.37 140 0.44671 

12 73.38 133 0.44824 

13 172.60 97.5 0.80739 

 

TABLE III. MEAN OF THE CLOSEST ANALOGY 

 

Project 

No 

Estimated Effort 

(hours) 

Actual 

Effort 

(hours) 

MRE 

1 252.74 201 0.25743 

2 247.38 265.5 0.06823 

3 209.95 264 0.20473 

4 224.05 201 0.11467 

5 175.77 209.5 0.16099 

6 186.22 210 0.11323 

7 177.93 224.5 0.20743 

8 168.88 191 0.11579 

9 371.67 188 0.97697 

10 133.02 171 0.22212 

11 129.36 140 0.00276 

12 132.63 133 0.00275 

13 173.08 97.5 0.81238 

 

7) Median of the Closest Analogy: The median of the 
closest analogy is an adaptation analogy obtained by 
calculating the median effort driver from as many as K > 2 
selected analogies. The estimated effort values for the median 
of the closest analogies with MRE values are shown in Table 
IV. 

TABLE IV. MEDIAN OF THE CLOSEST ANALOGY 

 

Project 

No 

Estimated Effort 

(hours) 

Actual 

Effort 

(hours) 

MRE 

1 223.01 201 0.10950 

2 272.10 265.5 0.02486 

3 218.04 264 0.17411 

4 253.01 201 0.25877 

5 214.30 209.5 0.02290 

6 195.98 210 0.06674 

7 206.51 224.5 0.080164 

8 203.37 191 0.064739 

9 410.32 188 1.18257 

10 137.56 171 0.19553 

11 128.83 140 0.00130 

12 134.13 133 0.00851 

13 196.78 97.5 1.06054 

 

8) Inverse Rank Weighted Mean of Closest Analogy: 
IRWM is an adaptation analogy that gives the highest weight 
in the selected analogy most similar to other analogy. The 
estimated effort values for IRWM of the closest analogies 
with MRE values are shown in Table V. In this research the 
value of K is 3. Therefore, 3 of the closest analogies are 
selected, the first closest analogy (CA) is given a weight of 
three, the second closest analogy (SC) is given a weight of 
two, and the third closest analogy (TC) is given a weight of 
one [23]. The calculation of IRWM is formulated in equation 
(7). 
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IRWM= (3CA+ 2SC+ TC)/6      (7) 

 
TABLE V. INVERSE RANK WEIGHTED MEAN 

 

Project 

No 

Estimated Effort 

(hours) 

Actual 

Effort 

(hours) 

MRE 

1 225.54 201 0.12207 

2 280.97 265.5 0.05827 

3 219.12 264 0.17000 

4 248.07 201 0.23416 

5 215.19 209.5 0.02718 

6 184.72 210 0.12039 

7 199.98 224.5 0.10920 

8 200.86 191 0.05161 

9 344.42 188 0.83200 

10 162.01 171 0.05259 

11 109.77 140 0.14909 

12 113.63 133 0.14561 

13 184.77 97.5 0.93480 

 

9) MMRE Results: The evaluation results of MMRE 
obtained by Euclidian distance had the lowest MMRE of 
0.23131 with K = 3 using the IRWM. We have calculated the 
MMRE values for each type of analogy adaptations. 

● Closest Analogy: 0.2602 

● Mean of the Closest Analogy: 0.25073 

● Median of the Closest Analogy: 0.25002 

● Inverse Rank Weighted Mean: 0.23131 

Closest analogy and the IRWM perform compared to 
other methods. IRWM adaptation provides the lowest 
MMRE value therefore it can be selected as the best 
adaptation method for this research.  

V. CONCLUSION 

There are no specific SEE models proposed to estimate 
the effort of OSS projects of freelance software developers. 
In this research, we have identified the effort drivers that 
affect the effort of an OSS project developed by freelance 
software developers. According to the literature, we have 
identified UUCP, developer experience, programming 
language, and application domain as the effort drivers of 
freelance OSS development. Accurately predicting the effort 
of software projects is very crucial for freelance developers. 
One of the most important issues of SEE is related to the 
estimation accuracy of the software projects. The accuracy of 
the estimated efforts is heavily reliant on the similarity of the 
historical data of the projects. Therefore, the similarity of the 
project to be estimated is very essential to improve the 
accuracy of the estimation. We selected the ANGEL SEE 
model, an analogy-based effort estimation model and we 
extended ANGEL to estimate the effort of OS freelance 
software development projects.  

In this paper, we propose four analogy adaptation 
methods, namely the closest analogy, the mean of the closest 
analogies, the median of the closest analogies and IRWM. 

The MMRE values of these four adaptation methods are 
respectively 0.2602, 0.25073, 0.25002 and 0.23131. 
Therefore, it is clear that IRWM performs better when 
adapting the analogies compared to the other 3 analogy 
adaptation methods. In this research, we have explored the 
viability of using UCP as the main effort driver and extension 
of the ANGEL model to estimate the effort of OS freelance 
software development. 
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