
Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

188

Paper No: SE-08 Systems Engineering

Extending use-case point-based software effort

estimation for Open Source freelance software

development

Dharshitha Srimal Senevirathne*

Department of Industrial Management

Faculty of Science, University of Kelaniya, Sri Lanka

senevira_im14045@stu.kln.ac.lk

Thareendhra Keerthi Wijayasiriwardhane

Department of Industrial Management

Faculty of Science, University of Kelaniya, Sri Lanka

thareen@kln.ac.lk

Abstract: Accurately predicting the software development

effort is very crucial when delivering the software systems on

time, within the budget and with the required functionality.

Overestimation of the software development effort can lead to

losing the projects whereas underestimation can cause budget

and schedule overruns. The development effort of a software

project depends on various factors and these effort factors

associated with the freelance software development are different

from those of traditional software development. Software

development companies employ various proprietary tools in

their projects for their planning, development, testing, etc.

However, freelance software developers functioning under tight

budgetary constraints are not in a position to afford them. As a

result, they tend to use free and open-source tools for their

software developments. There are various types of software

effort estimation models proposed, published and practiced in

the industry. However, there is no such software effort

estimation model specifically proposed to estimate the effort of

freelance software development. The main objective of this

paper is to extend Use Case Point-based software effort

estimation for the open-source freelance software development.

Initially, details of open source software projects were collected

from several freelance software developers. Based on the use

case diagrams, Use Case Points counts are then calculated for

each project. Taking other effort drivers associated with open

source freelance software development also into account, we

then estimate the effort of each software development. Our aim

is to explore the viability of using Use Case Points as the main

effort driver in estimating the effort of open source freelance

software development.

Keywords: Freelance software developers, Open source software

development, Software effort estimation, Use Case points

I. INTRODUCTION

Accurately predicting the software development effort of
freelance software developers is very crucial when delivering
the software systems on time, within the budget and with the
required functionality. Overestimation of the software
development effort can lead to losing the projects, whereas
underestimation can cause for budget and schedule overruns.
Since this research is based on the software effort estimation
(SEE) of open source (OS) the freelance software
development, it is really important for the freelance software
developers to make accurate predictions of effort the software
projects. There are no SEE models specifically proposed to
estimate the effort of OS freelance software development.

A. Freelance Software Development

With the rapid growth of Information Technology (IT),
the self-employment rate of the IT industry has started to
increase. Most organizations and people tend to get away
from the traditional methods of handling businesses. Since
the businesses move towards technology-based solutions and
systems, hiring a freelancer to come up with better solutions
has become a more cost-effective option. It is really important
for the freelance developers to properly estimate the effort of
the software projects not only to land the projects but also to
deliver the projects within the time and budget. Even though
there is a rapid increment in the self-employment and
freelancing rate the freelancers find it hard to estimate the
effort of the projects accurately. Therefore, it is important for
freelance developers to identify the factors that affect the
effort of an Open Source Software (OSS) project. These
factors are known as effort drivers. The effort drivers
associated with freelance software development are different
from those of traditional software development. In a software
company, a software project is performed by a team, which
consists of software developers, business analysts, a tech
lead, a team lead, etc. However, freelancers tend to work
alone or in very small groups.

B. Open Source Software Development

 OSS developers are usually expected to use their own
hardware and software tools. Similarly, OSS developers are
typically not owned or controlled by any organization to
monitor and manage their software development process [1].
Software development companies use various proprietary
tools in their software projects in development, testing,
planning, etc. phases. However, freelance software
developers functioning under tight budgetary constraints are
not in a position to afford them. As a result, they tend to use,
free and OS tools for their software developments.

C. Use Case Points based model

There are various types of the SEE models proposed,
published and practiced in the industry. Many of these models
use software size as the main effort driver for their
estimations. Among the various types of software size
measures proposed, Lines of Code (LOC) is the most widely
used measure in sizing software products. However, the LOC
is only available in the latter stages of the development of a
software product. Therefore, as an alternative, Function
Points (FP), a measure based on the functionality of a
software product has been introduced to quantify the software
size in the early stages of software development. However,

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

189

the service of trained experts is required to get the FP count
of software system accurately and thereby the freelance
developers are not in a position to use FP for sizing their
software products. Most of the modern software
developments are carried out using Object-Oriented System
Analysis and Design (OOSAD) methodology. In the early
stages of the software development life cycle, OOSAD
requires to draw use case diagrams to identify the
requirements and the functionality of the system. As a result,
an extension of FP, based on use cases called Use Case Points
(UCP) has been introduced. Therefore, in this research, we
discuss the viability of using UCP as the software sizing
measure of each software project.

D. Software Effort Estimation

Among the various SEE methods, the analogy is
considered as the most commonly used method. Analogy
based estimation has shown better evaluation results
compared to other machine learning and non-machine
learning methods [2]. Since analogy based SEE models are
able to learn from previous experiences analogy compares the
effort drivers of the proposed software project to previous
software project data to estimate the effort of most similar
projects.

The goal of this research is to extend a SEE model to
accurately predict the effort of OSS projects developed by
freelance software developers. In this research, we look into
OSS projects of freelance software developers. First, we
identify the effort drivers of freelance OS SEE. Since UCP is
selected as the software sizing measure of this research, we
examine the use case diagrams of each software project. Based
on the use case diagrams, the UCP count of each software
project is calculated. The identified effort drivers with UCP
count is applied to an analogy based SEE model to estimate
the effort of each software development. Finally, the
validation of the SEE model is done using n-fold cross-
validation.

The structure of this paper is as follows: Section 2
presents an overview of related work. Section 3 describes the
methodology that this research is conducted. Section 4
presents and discusses the results. Finally, in Section 5 we
present the conclusions and future work.

II. RELATED WORK

There are different types of SEE in the industry by the
practitioners. COCOMO, COCOMO II, WALSTON-FELIX
MODELS, and SLIM are some of them. They use LOC as
their main effort driver for their estimations. Since LOC is
only available in the latter stages of software development,
FP is used as an alternative. FP is a software sizing measure
based on the functionality of software projects. It has been
introduced to quantify the software size in the early stages of
software development [3]. FP was originally proposed for the
procedural systems, but it has now been extended to many
other software development paradigms such as Object-
Oriented systems [4], embedded systems and real-time
systems [5], [6]. However, there is an international standard
for counting FP and the service of trained experts is required
to get the FP count of software systems and thereby the
freelance developers functioning under tight budgetary
constraints are not in a position to use FP for sizing their
software products [7]. Nowadays, most of the modern
software development projects are carried out based on

OOSAD methodology. In the early stages of the software
development life cycle, OOSAD methodology uses use case
diagrams to identify the requirements of the system. As a
result, an extension of FP based on use cases called UCP has
been introduced by Gustav Karner in 1993 and UCP is
evolved from FP [3]. UCP requires the use case diagrams and
use case descriptions of the software projects that we consider
to calculate the effort [8].

A. Estimation by analogy

Effort estimation by analogy has become more popular
within the software development research community
because of its higher performance in prediction when
different data types are used. The concept of this method has
been simplified such that the effort of a new project can be
estimated by reusing efforts about similar, already
documented projects in a dataset, wherein a first step one has
to identify similar projects which contain the useful
predictions [9]. The predictive performance of analogy based
SEE relies heavily on the selection of two interrelated
parameters: number of nearest analogies and adjustment
strategy [8]. There are many analogy-based SEE models that
have been published by many researchers. However, ESTOR,
ACE, and ANGEL are the most commonly used models in
predicting effort of software development.

1) Estor: ESTOR is an early implementation of an
analogy-based tool to estimate software project effort [10]. It
was developed by Mukhopadhyay et al. in 1992 [11] in order
to evaluate the feasibility of case-based reasoning in SEE.
However, in accordance with the concept of case-based
reasoning, ESTOR uses the case-based reasoning and the
three best analogies to compute effort based on the Inverse
Rank Weighted Mean (IRWM) [12].

2) ACE: ACE (Algorithmic Cost Estimator) was
developed by Emilie Mendes et al. in the late 90s and it
focuses on exploring the benefits of analogy-based
estimation. It calculates the difference between the target
project and each calculated project in the database. ACE
principles involve the use of similarity functions which
should be defined to be able to compute the similarity
distance of each analogy with respect to the target project.
Also, the similarity function helps in the ranking of analogies
in terms of the most similar and least similar [10], [12].

3) Angel: Analogy based effort estimation methods
generate new predictions based on the assumption that similar
projects with respect to features description have similar
efforts. The authors of [13] proposed a tool called ANGEL to
predict the effort of a project by using the analogies and
estimates provided by the completed projects. ANGEL uses
historical effort data and the size of completed projects to
predict the estimation of the new project [14]. There are many
variables that affect the effort estimation. Not all the variables
selected will be helpful when finding good analogies. Some
variables may create noise. There, the authors [13] have
automated the process and provided an environment in which
data can be processed, analogies found and estimates
produced. This supports the collecting, storing and
identifying the most similar projects in order to estimate the
effort for a new project. ANGEL is based upon the
minimization of Euclidean distance in multi-dimensional
space.

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

190

B. Model comparison

ACE is known to provide a lower degree of accuracy [11].
ESTOR and ANGEL are said to use the same principles in
order to provide a list of most similar analogies though, the
content of the list is not always accurate. Moreover, ANGEL
is computationally expensive as compared to the other
methods since it saves and computes similarity for all cases.
ESTOR requires additional domain knowledge in order to
succeed to accurately estimate projects from very different
environments. Therefore, in this research, we extend the
ANGEL model to estimate the effort of OSS projects
developed by freelance software developers.

However, there are some limitations to the ANGEL tool [14].

● The values of the effort factors are standardized on the
basis that each effort factor contributes equally to the
value of the target effort factor.

● No specific method to handle out of range values.

● No specific method to handle "multiple-exact- match"
conditions.

● No specific mechanism to handle "no-match" condition

C. Performance measures

There are many performance measures that researchers
use in SEE such as MRE (Magnitude of Relative Error),
MIBRE (Mean Inverted Balanced Relative Error), PRED(25)
(percentage of predictions failing within 25%), MMRE
(Mean of Magnitude Relative Error), etc. MRE measures the
error ratio between the actual effort and the predicted effort
and it can be explained from the equation (1) where Ei is the
actual effort and Ei is the predicted effort.

 MRE = | Ei-Ei
| | / Ei (1)

However, MMRE is considered as the de facto standard
of all the performance measures out of them [15]. The
equation (2) presents the mean of all the MRE values.

 MMRE = (∑i=1
nMRE) /n (2)

III. METHODOLOGY

The methodology of this research is conducted via four
phases. In the first phase of the study, a thorough review of
the literature is done in order to identify the effort drivers of
freelance OSS development. Next, we collect details about
freelance OSS projects from several freelance software
developers. The third phase of the study is focused on
selecting an appropriate SEE model and extending it from
traditional software development to OS, freelance software
development. In the fourth phase, the outcome of the
extended model is tested and validated.

A. Identifying Effort Drivers

In software companies, a software project is handled by a
group of people, which consist of software developers,
business analysts, a tech lead, a team lead, etc. [16]. However,
freelancers tend to work alone or in very small groups. Expert
judgment is one of the most popular effort estimation
methods used in the software industry. This would be a costly
option for a freelancer. Therefore, freelance software
developers are incapable of hiring an industry expert.
Software companies use various proprietary tools for
software testing, coding, managing projects, etc. Freelancers

are not in a position to afford them. As a result, they tend to
use, free and OS tools for their software developments.

1) UCP Count: In this research, UCP is selected as the
software sizing factor of the freelance, OSS projects. First,
the UCP count of each project is calculated. Most of the
Technology Complexity Factors (TCF) such as special user
training facilities required, access for third parties, response
or throughput performance objectives, etc. and
Environmental Complexity Factors (ECF) such as familiarity
with Rational Unified Process, part-time workers, lead
analyst capability, etc. are irrelevant and have no effect in
freelance OSS development. Due to this reason, TCF and
ECF can be omitted [17]. Therefore, Unadjusted Use Case
Points (UUCP) is considered as the main effort factor in
sizing the OSS products.

 According to Karner [3], the actors in a use case model
can be categorized as simple, average and complex.

· Simple: Weighting factor 1

· Average: Weighting factor 2

· Complex: Weighting factor 3

The total unadjusted actor weight (UAW) is measured by
counting the number of actors in each category multiplying
each total by the defined weighting factor and then adding the
products

The use cases are also categorized into three categories
and they are simple, average and complex [3]. This
categorization depends on the number of transactions,
including the transactions in alternative flows. However,
included and extending use cases are not considered. A
simple use case has 3 or fewer transactions; an average use
case has 4 to 7 transactions, and a complex use case has more
than 7 transactions. A weighting factor is assigned to each use
case category:

· Simple: Weighting factor 5
· Average: Weighting factor 10
· Complex: Weighting factor 15.

The unadjusted use case weights (UUCW) are calculated
by counting the number of use cases in each category, and
then multiplying each category of use case with its weight
and adding the products. The UAW is added to the UUCW to
get the UUCP.

2) Application Domain: The software industry as such
does not have a specific domain. Rather, this industry would
provide services or enable other services by applying the right
technologies. A software domain is nothing but the subject
area in which a particular project belongs to. It can be
scientific development, business development, health/
medical industry, embedded systems, defense systems, etc.
The demand for each domain can vary. Some domain may
have high demand while the demands for other domains is
low [18]. Some developers could be more comfortable in
particular domains while some are new to those domains.
This means some developers may have academic training or
substantial work experience in a particular domain and they
understand the design, architecture, domain rules, etc.

3) Programming language: The programming
language of an OSS project is one of the important aspects to
be considered. It should be selected based on the project
requirements. Different programming languages are suitable

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

191

for different application domains. For example, Python is
usually used for scientific systems, whereas PHP and Java are
used for web developments. The choice of selecting a
programming language for developers depends on the
required functionalities of the software project [19].

The programming language selected for a given project
should be sufficiently expressive to cover the requirements.
On the other hand, an incorrect language selection may affect
the solution from reaching the expected level. Some
languages are expressive thanks to their verbose nature. It
allows more expressivity and hence more choices to be able
to make use of simple syntax. Effectively, the simple syntax
would eventually result in the developer and reader’s
familiarity with the code quicker than having the reader being
exposed to some new complex syntax [20].

4) Developer experience: Freelance software
developers land projects through contacts of their previous
projects. The experience in freelancing can't be measured
with the time because some freelance software developers
could have worked with fewer projects for a long duration of
time while another set of developers would have worked with
many projects in a short period of time. Therefore, the
number of projects they have completed is used as the
measurement of the freelance developer's experience. In
online crowdsourcing platforms or online market places, they
get projects based on their ratings and feedbacks. Rating and
feedbacks are given by the project owners of previously
completed projects. Therefore, having a good experience is a
clear advantage to land more projects [18]. If a developer has
previous experience it easy to understand the requirements.
When developing a particular feature or solving a particular
problem it would take less time to come up with a better
solution. Generally, specific skills and depth of experience
matter a lot when dealing with complex tasks [18].
Experience helps the developers to select a better approach to
provide a solution to a requirement.

B. Data Collection

We have considered OSS projects developed in multiple
domains, by software development freelancers in Sri Lanka
with different levels of experience. The domains include
business applications, embedded systems, data science
projects, etc. The complexity of these OSS projects is
different and the time taken to complete each project is also
different.

We have collected the details of 13 OSS projects from 9
freelance software developers. Based on the use case
diagrams, the UUCP count is calculated for each project.
There can be some inefficiencies in the use case diagrams.
These inefficiencies will affect when calculating the UCP of
those projects. Therefore, the total effort estimation of those
software projects could vary from its real values. We have
identified the erroneous diagrams by grouping the projects
according to their domain and by comparing each project
according to its UCP and the actual effort. Details of the
collected OSS projects collected from freelance software
developers are shown in Table I.

TABLE I. OPENSOURCE SOFTWARE PROJECTS OF FREELANCE

SOFTWARE DEVELOPERS

No Developer

Experience

Language Domain UUCP Effort

(Hours)

1 17 Java BA 247 201

2 19 Java BA 304 265.5

3 21 Java BA 258 264

4 25 PHP BA 231 201

5 19 PHP BA 216 209.5

6 23 PHP BA 192 210

7 16 C ES 177 224.5

8 19 C ES 168 191

9 29 Python ES 204 188

10 27 Python ES 117 171

11 17 Python SA 71 140

12 23 Python SA 73 133

13 18 Pythons SA 95 97.5

BA: Business Application, ES: Embedded systems, SA: Scientific Application

Since data values are on different scales, we standardize

them using the equation given in (3) where X is the actual
value, Xmin is the minimum effort of the data set and Xmax is
the maximum effort of the data set.

X = (X-Xmin)/(Xmax-Xmin) (3)

1) Similarity Measure: A similarity measure is used to
calculate the similarity between projects based on how close
the distance between projects according to the type of each
attribute. The are many measurement techniques like
Euclidean, Manhattan, and Minkowski that can be used to
measure the distances between projects. Angel uses
Euclidean distance is measuring the distance (D) between two
software project points in the plane with coordinates (x, y)
and (x|, y|) is given by equation (4).

 D = [(x-x|)2 +(y-y|)2]1/2
 (4)

2) Number of Analogies: The chosen analogy is
defined by how many similar projects are used to compare to
measure the effort of the OS software project. Basically, there
are two ways to select analogies. They are fixed and dynamic
analogy selection. This research adopts fixed analogy
selection and suggests using one closest analogy (K = 1), two
closest analogies K = {1, 2}, three closest analogies K = {1,
2, 3}. K can be defined through the following equation where
N is the number of data elements. The equation (5) denotes
the value of K.

K = (N)1/2 (5)

3) Analogy Adaptation: The effort of the new project is
calculated by using certain statistical techniques. There are
four types of analogy adaptations that can be applied. They
are the Closest Analogy (CA), the mean of closest analogies,
the median of closest analogy, and IRWM of closest analogy.

4) Analogy Adaptation Rules: The effort estimation of
a new project is done by dividing the actual effort of the old

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

192

project effort (𝐸𝑓𝑓𝑜𝑟𝑡𝑜𝑙𝑑) with the size of old project (𝑆𝑖𝑧𝑒𝑜𝑙𝑑)

then multiply with the size of new project (𝑆𝑖𝑧𝑒𝑛𝑒𝑤). Since the
sizing factor of this model is UUCP, the equation (6) denoted
the formulations of these adaptation rules [21].

𝐸𝑓𝑓𝑜𝑟𝑡𝑛𝑒𝑤 = (𝐸𝑓𝑓𝑜𝑟𝑡𝑜𝑙𝑑 /𝑆𝑖𝑧𝑒𝑜𝑙𝑑) × 𝑆𝑖𝑧𝑒𝑛𝑒𝑤 (6)

The n-fold Cross-Validation technique is one of the most

used approaches by practitioners for model selection and
error estimation of classifiers. The dataset is split into k
number of subsets. Then, a portion of the split data set is used
for testing while the rest of the data are used to learn the
model. This is done iteratively [22]. Finally, by comparing
the actual effort against the estimated effort, we validate our
effort model using n-fold cross-validation. When a specific
value for n is selected, it could be used in place of 'n' with the
reference to the model, such as n = 3 becoming 3-fold cross-
validation. The model is tested with a portion of data while
holding the rest of the dataset as the training set. This process
is iterated until the remaining groups as a training data set.
Data sets are randomly divided into training data and testing
data, with a percentage of 92% and 8% respectively. The
accuracy is tested by using MMRE.

IV. RESULTS

We have tested the data with four analogy adaptation
methods and the most accurate adaptation method is selected
by comparing the MMRE of each method.

5) Closest Analogy: The closest analogy focuses on
selecting from the closest project, which means the value of
K=1. The estimated effort values for the closest analogy of
each project with MRE values are shown in Table II.

6) Mean of the Closest Analogy: The mean of closest
analogies is the adaptation analogy obtained by calculating
the average effort driver from as many as K > 1 selected
analogy. The estimated effort values for the mean of the
closest analogies with MRE values are shown in Table III.

TABLE II. CLOSEST ANALOGY

Project

No

Estimated Effort

(hours)

Actual

Effort

(hours)

MRE

1 215.72 201 0.07323

2 311.07 265.5 0.17164

3 225.32 264 0.14649

4 252.66 201 0.25699

5 236.25 209.5 0.12768

6 167.06 210 0.20445

7 201.23 224.5 0.10364

8 213.08 191 0.11563

9 231.93 188 0.23366

10 213.16 171 0.24658

11 71.37 140 0.44671

12 73.38 133 0.44824

13 172.60 97.5 0.80739

TABLE III. MEAN OF THE CLOSEST ANALOGY

Project

No

Estimated Effort

(hours)

Actual

Effort

(hours)

MRE

1 252.74 201 0.25743

2 247.38 265.5 0.06823

3 209.95 264 0.20473

4 224.05 201 0.11467

5 175.77 209.5 0.16099

6 186.22 210 0.11323

7 177.93 224.5 0.20743

8 168.88 191 0.11579

9 371.67 188 0.97697

10 133.02 171 0.22212

11 129.36 140 0.00276

12 132.63 133 0.00275

13 173.08 97.5 0.81238

7) Median of the Closest Analogy: The median of the
closest analogy is an adaptation analogy obtained by
calculating the median effort driver from as many as K > 2
selected analogies. The estimated effort values for the median
of the closest analogies with MRE values are shown in Table
IV.

TABLE IV. MEDIAN OF THE CLOSEST ANALOGY

Project

No

Estimated Effort

(hours)

Actual

Effort

(hours)

MRE

1 223.01 201 0.10950

2 272.10 265.5 0.02486

3 218.04 264 0.17411

4 253.01 201 0.25877

5 214.30 209.5 0.02290

6 195.98 210 0.06674

7 206.51 224.5 0.080164

8 203.37 191 0.064739

9 410.32 188 1.18257

10 137.56 171 0.19553

11 128.83 140 0.00130

12 134.13 133 0.00851

13 196.78 97.5 1.06054

8) Inverse Rank Weighted Mean of Closest Analogy:
IRWM is an adaptation analogy that gives the highest weight
in the selected analogy most similar to other analogy. The
estimated effort values for IRWM of the closest analogies
with MRE values are shown in Table V. In this research the
value of K is 3. Therefore, 3 of the closest analogies are
selected, the first closest analogy (CA) is given a weight of
three, the second closest analogy (SC) is given a weight of
two, and the third closest analogy (TC) is given a weight of
one [23]. The calculation of IRWM is formulated in equation
(7).

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

193

IRWM= (3CA+ 2SC+ TC)/6 (7)

TABLE V. INVERSE RANK WEIGHTED MEAN

Project

No

Estimated Effort

(hours)

Actual

Effort

(hours)

MRE

1 225.54 201 0.12207

2 280.97 265.5 0.05827

3 219.12 264 0.17000

4 248.07 201 0.23416

5 215.19 209.5 0.02718

6 184.72 210 0.12039

7 199.98 224.5 0.10920

8 200.86 191 0.05161

9 344.42 188 0.83200

10 162.01 171 0.05259

11 109.77 140 0.14909

12 113.63 133 0.14561

13 184.77 97.5 0.93480

9) MMRE Results: The evaluation results of MMRE
obtained by Euclidian distance had the lowest MMRE of
0.23131 with K = 3 using the IRWM. We have calculated the
MMRE values for each type of analogy adaptations.

● Closest Analogy: 0.2602

● Mean of the Closest Analogy: 0.25073

● Median of the Closest Analogy: 0.25002

● Inverse Rank Weighted Mean: 0.23131

Closest analogy and the IRWM perform compared to
other methods. IRWM adaptation provides the lowest
MMRE value therefore it can be selected as the best
adaptation method for this research.

V. CONCLUSION

There are no specific SEE models proposed to estimate
the effort of OSS projects of freelance software developers.
In this research, we have identified the effort drivers that
affect the effort of an OSS project developed by freelance
software developers. According to the literature, we have
identified UUCP, developer experience, programming
language, and application domain as the effort drivers of
freelance OSS development. Accurately predicting the effort
of software projects is very crucial for freelance developers.
One of the most important issues of SEE is related to the
estimation accuracy of the software projects. The accuracy of
the estimated efforts is heavily reliant on the similarity of the
historical data of the projects. Therefore, the similarity of the
project to be estimated is very essential to improve the
accuracy of the estimation. We selected the ANGEL SEE
model, an analogy-based effort estimation model and we
extended ANGEL to estimate the effort of OS freelance
software development projects.

In this paper, we propose four analogy adaptation
methods, namely the closest analogy, the mean of the closest
analogies, the median of the closest analogies and IRWM.

The MMRE values of these four adaptation methods are
respectively 0.2602, 0.25073, 0.25002 and 0.23131.
Therefore, it is clear that IRWM performs better when
adapting the analogies compared to the other 3 analogy
adaptation methods. In this research, we have explored the
viability of using UCP as the main effort driver and extension
of the ANGEL model to estimate the effort of OS freelance
software development.

REFERENCES

[1] W.Scacchi., J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani,

“Understanding Free/Open Source Software Development Processes”,

Software Process--Improvement and Practice, vol. 11, no. 2, pp95-105,
March/April 2006.

[2] A. Idri, F. A. Amazal, and A. Abran, “Analogy-based software

development effort estimation: A systematic mapping and review,” Inf.

Softw. Technol., vol. 58, pp. 206–230, 2015.

[3] G. Karner. “Resource Estimation for Objectory Projects”, Objective
Systems SF AB, 1993.

[4] G. Costagliola., F. Ferrucci, G. Tortora, and G. Vitiello, “Class point:
an approach for the size estimation of object-oriented systems”. IEEE

Transactions on Software Engineering, no31(1), pp52 – 74, 2005.

[5] C. Jones, Applied Software Measurement: Assuring Productivity and
Quality: McGraw Hill, 1996 [

[6] A. Abran, M. Maya, J. M. Desharnais and D. St-Pierre, "Adapting
Function Points to Real-Time Software," American Programmer, vol.

10, 1997

[7] M. Barlage, A. Born. and A. Witteloostuijn, “The needs of freelancers
and the characteristics of ‘gigs’: Creating beneficial relations between

freelancers and their hiring organizations”, Emerald Open Research,

August 2019.

[8] M. Damodoran and A.N.E. Washington, “Estimation using Use Case

Points”, 2002.

[9] M. Shepperd and C. Schofield, “Estimating software project effort

using analogies”, Journal of IEEE Transaction on Software
Engineering, vol. 23, pp736–743, 1997.

[10] J. Keung, “Software Development Cost Estimation Using Analogy: A

Review”, Software Engineering Conference,ASWEC'09. Australian.
IEEE, 2009.

[11] T. Mukhopadhyay, S. Vincinanza, M. J. Pietula., “Estimating the
feasibility of a casebased reasoning model for software effort

estimation”,MIS Quarterly, 16:155, 1992.

[12] E. Mendes, N. Mosley, S. Counsell, “Web effort estimation”,ICWE'07
Proceedings of the 7th international conference on Web engineering.

Pages 90-104, 2007.

[13] K. Moløkken amd M. Jorgensen, “A review of surveys on software

effort estimation”, Empirical Software Engineering, 2003. ISESE

2003.

[14] S. Sridhar, “EXTENDED ANGEL: Knowledge-Based Approach For

LOC And Effort Estimation For Multimedia Projects In Medical

Domain”, International Journal of Software Engineering &
Applications (IJSEA). vol. 2, no. 4, pp97-105, 2011.

[15] P. Dan, and M. Korte, “Comparative Studies of the Model Evaluation
Criterions MMRE and PRED in Software Cost Estimation Research”,

Second International Symposium on Empirical Software Engineering

and Measurement (ESEM 2008), 2008.

[16] H.P. Patra, K. Rajnish, and U.S. Panda, “A New Software Cost

Estimation model for Small Software Organizations: An Empirical

Approach.” International Journal of Applied Engineering Research.
vol. 10, no. 15, pp. 36076-36082, 2015.

[17] P. Mohagheghi, B. Anda, and R. Conradi., “Effort estimation of use
cases for incremental large-scale software development,” in 27th

International Conference on Software Engineering. IEEE, 2005.

[18] A. Dubey, K. Abhinav, S. Taneja, G. Virdi, A. Dwarakanath, A. Kass

and M.S. Kuriakose, “Dynamics of Software Development

Crowdsourcing”, Proceedings of the 2016 IEEE 11th International
Conference onGlobal Software Engineering (ICGSE), Irvine, CA,

USA, 2–5 August 2016.

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

194

[19] Z. Liao, B. Zhao, S. Liu, H. Jin., D. He, L. Yang,, Y. Zhang, J. Wu.,

“A Prediction Model of the Project Life-Span in Open Source Software

Ecosystem”, Mobile Networks and Applications, vol. 24, no. 4, 2019.

[20] Dorn, J., A General Software Readability Model. University of

Virginia, Charlottesville, Virginia. 2012.

[21] A. Ardiansyah, M.M. Mardhia and S. Handayaningsih, “Analogy-

based model for software project effort estimation”, International

Journal of Advances in Intelligent Informatics, vol 4,no. 3, November
2018.

[22] D. Anguita, L. Ghelardoni, A. Ghio, L. Oneto, and S. Ridella, “The ‘K’
in K-fold Cross Validation”, European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning, 2012.

[23] Mendes, Cost Estimation Techniques for Web Projects. IGI Global,

2008.

