

Materials Science inc. Nanomaterials & Polymers

Effect of Benzene Derivatives as Guest Molecules on Semiconductor Properties of MOF-199

Haleemathul Zahadiya,^[a] Ruwan P. Wijesundera,^[b] Champika V. Hettiarachchi,*^[a] and Ishanie R. Perera*^[a]

A metal organic framework, MOF-199, has been synthesized under solvothermal conditions. Powder X-ray diffraction (PXRD) pattern, Fourier-transform infrared spectra (FT-IR) and scanning electron microscopic images (SEM) confirmed the formation of the expected MOF-199 structure. The semiconductor properties of MOF-199 were then fine-tuned by introducing three benzene derivatives as guest molecules (aniline, *m*-aminobenzoic acid and *p*-benzoquinone). Modified MOF-199 samples were characterized using PXRD and FT-IR. Mott-Schottky analysis and solid-state UV-visible spectroscopy were used to investigate the semiconductor properties of these materials. Once MOF was modified with benzene derivatives, slight

Introduction

Metal organic frameworks (MOFs) also known as porous 3dimensional coordination polymers (PCPs) are porous crystalline materials composed of metal centers/clusters coordinated with organic linker ligands via metal-ligand coordinate bonds.^[1-3] The combination of organic, inorganic hybrid structure forms a 3D network that demonstrates high surface area (>6000 $m^2 q^{-1}$), large pore volume (up to 90% free volume), high thermal stability and high porosity.^[4] By changing the metal center or the organic linker, the architecture and the chemical properties of a MOF could be easily fine-tuned and this enables MOFs to be utilized in a variety of applications. The modifications to the original MOF structure can be done at the synthesis stage or after the synthesis. As a result of the adjustable architecture, MOFs have been extensively investigated in research areas such as gas adsorption, separation, purification, catalysis, sensing, ion exchange and energy related technologies.^[3-6]

[a] *H. Zahadiya, Prof. C. V. Hettiarachchi, Dr. I. R. Perera* Department of Chemistry Faculty of Science University of Peradeniya, Peradeniya, 20400, Sri Lanka E-mial: E-mail: ishanieperera@sci.pdn.ac.lk champikav@sci.pdn.ac.lk
[b] *Prof. R. P. Wijesundera* Department of Physics Faculty of Science University of Kelaniya, Kelaniya, 11600, Sri Lanka
[a] Supporting information for this article is available on the WWW under https://doi.org/10.1002/slct.202004528 changes in *d* spacing values of PXRD patterns and appearance of new peaks in FT-IR spectra were observed. The Mott-Schottky analysis of modified MOF-199 demonstrated an enhancement in the carrier concentration up to 83% and a negative potential shift of the flat band potential compared to pure MOF-199, indicating a higher degree of band bending. According to the solid-state UV-visible spectra, doping with organic molecules reduced the bandgap in modified MOF-199. Thus, this study evidently showcases the potential of finetuning the semiconductor properties of a MOF according to the requirement that allows a single MOF to be utilized in a variety of applications with a simple modification.

MOFs with suitable bandgaps, higher conductivity, high porosity, and easy tunability of functionality and structural properties are potential candidates to be used as semi-conductors in solar energy conversion industries.^[1,7-10] The charge separation upon light irradiation is the fundamental principle of a semiconductor. In a typical semiconductor like TiO₂, empty *d* orbitals of Ti form the conduction band which accommodates the photo excited electrons. Similarly, in the 3D network of a MOF, since there are metal centers connected by the organic linkers, a proper mixing of empty *d* orbitals of the metal with the LUMOs of the organic linker is required to form the conduction band.^[11] MOF-5 (3.4 eV), MIL-125 (2.6–3.6 eV), MFU-4 (3.1 eV), Zr-UiO-66 (2.2–3.1 eV) and Sr-MOF (2.3 eV) are a few of the MOFs with suitable bandgaps to be used as semiconductors.^[12]

Inherent poor conductivity of MOFs is a main drawback that limits their utilization as semiconductors. In-situ and post synthetic doping has been recognized as one of the techniques to enhance the properties of MOFs including conductivity.^[13-14] Improving conductivity has been achieved via strategies such as through-bond pathways, -space, -extended conjugation, redox hoping and guest-promoted transport. In guest-promoted transport method, porous MOFs were used since the loading of electroactive guest molecules were done in to pores of the framework.^[15-17] lodine and polyiodides,^[18-20] organic and organometallic molecules,^[21-23] and conductive polymers and oxides^[24-27] have been used as guest molecules in this strategy. Even though the conductivity enhancement has been extensively demonstrated using the host-quest transport method, the formation of new charge transport pathways or a proper mechanism has not been clearly explained yet. It is reported that detailed compositional and crystallographic analysis